These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 27636461)

  • 1. Free-Space Quantum Signatures Using Heterodyne Measurements.
    Croal C; Peuntinger C; Heim B; Khan I; Marquardt C; Leuchs G; Wallden P; Andersson E; Korolkova N
    Phys Rev Lett; 2016 Sep; 117(10):100503. PubMed ID: 27636461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Realization of quantum digital signatures without the requirement of quantum memory.
    Collins RJ; Donaldson RJ; Dunjko V; Wallden P; Clarke PJ; Andersson E; Jeffers J; Buller GS
    Phys Rev Lett; 2014 Jul; 113(4):040502. PubMed ID: 25105603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental demonstration of quantum digital signatures over 43 dB channel loss using differential phase shift quantum key distribution.
    Collins RJ; Amiri R; Fujiwara M; Honjo T; Shimizu K; Tamaki K; Takeoka M; Sasaki M; Andersson E; Buller GS
    Sci Rep; 2017 Jun; 7(1):3235. PubMed ID: 28607475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental demonstration of quantum digital signatures using phase-encoded coherent states of light.
    Clarke PJ; Collins RJ; Dunjko V; Andersson E; Jeffers J; Buller GS
    Nat Commun; 2012; 3():1174. PubMed ID: 23132024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Security of quantum digital signatures for classical messages.
    Wang TY; Cai XQ; Ren YL; Zhang RL
    Sci Rep; 2015 Mar; 5():9231. PubMed ID: 25782417
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient quantum digital signatures without symmetrization step.
    Lu YS; Cao XY; Weng CX; Gu J; Xie YM; Zhou MG; Yin HL; Chen ZB
    Opt Express; 2021 Mar; 29(7):10162-10171. PubMed ID: 33820149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental transmission of quantum digital signatures over 90  km of installed optical fiber using a differential phase shift quantum key distribution system.
    Collins RJ; Amiri R; Fujiwara M; Honjo T; Shimizu K; Tamaki K; Takeoka M; Andersson E; Buller GS; Sasaki M
    Opt Lett; 2016 Nov; 41(21):4883-4886. PubMed ID: 27805641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DiLizium: A Two-Party Lattice-Based Signature Scheme.
    Vakarjuk J; Snetkov N; Willemson J
    Entropy (Basel); 2021 Jul; 23(8):. PubMed ID: 34441129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantum digital signature with unidimensional continuous-variable against the measurement angular error.
    Zhao W; Shi R; Wu X; Wang F; Ruan X
    Opt Express; 2023 May; 31(10):17003-17016. PubMed ID: 37157766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum digital signatures without quantum memory.
    Dunjko V; Wallden P; Andersson E
    Phys Rev Lett; 2014 Jan; 112(4):040502. PubMed ID: 24580426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A New Quantum Blind Signature Scheme with BB84-State.
    Chen FL; Wang ZH; Hu YM
    Entropy (Basel); 2019 Mar; 21(4):. PubMed ID: 33267050
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantum signature scheme based on Hadamard and H
    Xin X; Wang Z; Yang Q
    Appl Opt; 2019 Sep; 58(27):7346-7351. PubMed ID: 31674378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of generalized quantum measurements for unambiguous discrimination of multiple non-orthogonal coherent states.
    Becerra FE; Fan J; Migdall A
    Nat Commun; 2013; 4():2028. PubMed ID: 23774177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical quantum digital signature with a gigahertz BB84 quantum key distribution system.
    An XB; Zhang H; Zhang CM; Chen W; Wang S; Yin ZQ; Wang Q; He DY; Hao PL; Liu SF; Zhou XY; Guo GC; Han ZF
    Opt Lett; 2019 Jan; 44(1):139-142. PubMed ID: 30645569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum photonic network and physical layer security.
    Sasaki M; Endo H; Fujiwara M; Kitamura M; Ito T; Shimizu R; Toyoshima M
    Philos Trans A Math Phys Eng Sci; 2017 Aug; 375(2099):. PubMed ID: 28652495
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two Quantum Proxy Blind Signature Schemes Based on Controlled Quantum Teleportation.
    Luo Q; Zhang T; Huang X; Jing N
    Entropy (Basel); 2022 Oct; 24(10):. PubMed ID: 37420441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Practical security analysis of a continuous-variable source-independent quantum random number generator based on heterodyne detection.
    Li Y; Fei Y; Wang W; Meng X; Wang H; Duan Q; Han Y; Ma Z
    Opt Express; 2023 Jul; 31(15):23813-23829. PubMed ID: 37475223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Twin-Field Quantum Digital Signature with Fully Discrete Phase Randomization.
    Wu J; He C; Xie J; Liu X; Zhang M
    Entropy (Basel); 2022 Jun; 24(6):. PubMed ID: 35741559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement-Device Independency Analysis of Continuous-Variable Quantum Digital Signature.
    Shang T; Li K; Liu J
    Entropy (Basel); 2018 Apr; 20(4):. PubMed ID: 33265382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free-space quantum key distribution by rotation-invariant twisted photons.
    Vallone G; D'Ambrosio V; Sponselli A; Slussarenko S; Marrucci L; Sciarrino F; Villoresi P
    Phys Rev Lett; 2014 Aug; 113(6):060503. PubMed ID: 25148310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.