BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

413 related articles for article (PubMed ID: 27636544)

  • 1. Varying the morphology of silver nanoparticles results in differential toxicity against micro-organisms, HaCaT keratinocytes and affects skin deposition.
    Holmes AM; Lim J; Studier H; Roberts MS
    Nanotoxicology; 2016 Dec; 10(10):1503-1514. PubMed ID: 27636544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.
    Hamed S; Emara M; Shawky RM; El-Domany RA; Youssef T
    J Basic Microbiol; 2017 Aug; 57(8):659-668. PubMed ID: 28543603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape-dependent antimicrobial activities of silver nanoparticles.
    Cheon JY; Kim SJ; Rhee YH; Kwon OH; Park WH
    Int J Nanomedicine; 2019; 14():2773-2780. PubMed ID: 31118610
    [No Abstract]   [Full Text] [Related]  

  • 4. Antibacterial mechanisms of a novel type picosecond laser-generated silver-titanium nanoparticles and their toxicity to human cells.
    Korshed P; Li L; Liu Z; Mironov A; Wang T
    Int J Nanomedicine; 2018; 13():89-101. PubMed ID: 29317818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of silver nanoparticle toxicity in skin in vivo and keratinocytes in vitro.
    Samberg ME; Oldenburg SJ; Monteiro-Riviere NA
    Environ Health Perspect; 2010 Mar; 118(3):407-13. PubMed ID: 20064793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of silver nanoparticles on human dermal fibroblasts and epidermal keratinocytes.
    Galandáková A; Franková J; Ambrožová N; Habartová K; Pivodová V; Zálešák B; Šafářová K; Smékalová M; Ulrichová J
    Hum Exp Toxicol; 2016 Sep; 35(9):946-57. PubMed ID: 26500221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of poly acrylic acid modified silver nanoparticles and their antimicrobial activities.
    Ni Z; Wang Z; Sun L; Li B; Zhao Y
    Mater Sci Eng C Mater Biol Appl; 2014 Aug; 41():249-54. PubMed ID: 24907758
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydroxypropylcellulose as a novel green reservoir for the synthesis, stabilization, and storage of silver nanoparticles.
    Hussain MA; Shah A; Jantan I; Shah MR; Tahir MN; Ahmad R; Bukhari SN
    Int J Nanomedicine; 2015; 10():2079-88. PubMed ID: 25844038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosynthesis of Silver Nanoparticles from
    Shakhatreh MAK; Al-Rawi OF; Swedan SF; Alzoubi KH; Khabour OF; Al-Fandi M
    Curr Pharm Biotechnol; 2021; 22(9):1254-1263. PubMed ID: 33081683
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver nanoparticles exert a long-lasting antiproliferative effect on human keratinocyte HaCaT cell line.
    Zanette C; Pelin M; Crosera M; Adami G; Bovenzi M; Larese FF; Florio C
    Toxicol In Vitro; 2011 Aug; 25(5):1053-60. PubMed ID: 21501681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.
    Birla SS; Tiwari VV; Gade AK; Ingle AP; Yadav AP; Rai MK
    Lett Appl Microbiol; 2009 Feb; 48(2):173-9. PubMed ID: 19141039
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silver nanoparticles as a safe preservative for use in cosmetics.
    Kokura S; Handa O; Takagi T; Ishikawa T; Naito Y; Yoshikawa T
    Nanomedicine; 2010 Aug; 6(4):570-4. PubMed ID: 20060498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Innovative biosynthesis of silver nanoparticles using yeast glucan nanopolymer and their potentiality as antibacterial composite.
    Elnagar SE; Tayel AA; Elguindy NM; Al-Saggaf MS; Moussa SH
    J Basic Microbiol; 2021 Aug; 61(8):677-685. PubMed ID: 34146360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, characterization, optical and antimicrobial studies of polyvinyl alcohol-silver nanocomposites.
    Mahmoud KH
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 138():434-40. PubMed ID: 25523046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Penetration of silver nanoparticles into porcine skin ex vivo using fluorescence lifetime imaging microscopy, Raman microscopy, and surface-enhanced Raman scattering microscopy.
    Zhu Y; Choe CS; Ahlberg S; Meinke MC; Alexiev U; Lademann J; Darvin ME
    J Biomed Opt; 2015 May; 20(5):051006. PubMed ID: 25394476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Completely green synthesis of dextrose reduced silver nanoparticles, its antimicrobial and sensing properties.
    Mohan S; Oluwafemi OS; George SC; Jayachandran VP; Lewu FB; Songca SP; Kalarikkal N; Thomas S
    Carbohydr Polym; 2014 Jun; 106():469-74. PubMed ID: 24721103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Molecular Mechanisms of the Antibacterial Effect of Picosecond Laser Generated Silver Nanoparticles and Their Toxicity to Human Cells.
    Korshed P; Li L; Liu Z; Wang T
    PLoS One; 2016; 11(8):e0160078. PubMed ID: 27575485
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of silver nanoparticles stored under air or argon with respect to the induction of intracellular free radicals and toxic effects toward keratinocytes.
    Ahlberg S; Meinke MC; Werner L; Epple M; Diendorf J; Blume-Peytavi U; Lademann J; Vogt A; Rancan F
    Eur J Pharm Biopharm; 2014 Nov; 88(3):651-7. PubMed ID: 25108059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial efficacy of silver nanoparticles against multi-drug resistant clinical isolates from post-surgical wound infections.
    Kasithevar M; Periakaruppan P; Muthupandian S; Mohan M
    Microb Pathog; 2017 Jun; 107():327-334. PubMed ID: 28411059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film.
    Ghosh S; Kaushik R; Nagalakshmi K; Hoti SL; Menezes GA; Harish BN; Vasan HN
    Carbohydr Res; 2010 Oct; 345(15):2220-7. PubMed ID: 20800222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.