These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27636675)

  • 1. Colorimetric Sensor Arrays for the Detection and Identification of Chemical Weapons and Explosives.
    Kangas MJ; Burks RM; Atwater J; Lukowicz RM; Williams P; Holmes AE
    Crit Rev Anal Chem; 2017 Mar; 47(2):138-153. PubMed ID: 27636675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid electrochemical-colorimetric sensing platform for detection of explosives.
    Forzani ES; Lu D; Leright MJ; Aguilar AD; Tsow F; Iglesias RA; Zhang Q; Lu J; Li J; Tao N
    J Am Chem Soc; 2009 Feb; 131(4):1390-1. PubMed ID: 19173664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Development of Digital Image Colorimetric Quantitative Analysis of Multi-Explosives Using Polymer Gel Sensors.
    Thipwimonmas Y; Thiangchanya A; Phonchai A; Thainchaiwattana S; Jomsati W; Jomsati S; Tayayuth K; Limbut W
    Sensors (Basel); 2021 Dec; 21(23):. PubMed ID: 34884043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. One-Step Instantaneous Detection of Multiple Military and Improvised Explosives Facilitated by Colorimetric Reagent Design.
    Liu Y; Li J; Wang G; Zu B; Dou X
    Anal Chem; 2020 Oct; 92(20):13980-13988. PubMed ID: 32938181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a miniature calorimeter for identification and detection of explosives and other energetic compounds.
    Liu YS; Ugaz VM; North SW; Rogers WJ; Mannan MS
    J Hazard Mater; 2007 Apr; 142(3):662-8. PubMed ID: 17034941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Explosive and chemical threat detection by surface-enhanced Raman scattering: a review.
    Hakonen A; Andersson PO; Stenbæk Schmidt M; Rindzevicius T; Käll M
    Anal Chim Acta; 2015 Sep; 893():1-13. PubMed ID: 26398417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using the iPhone as a device for a rapid quantitative analysis of trinitrotoluene in soil.
    Choodum A; Kanatharana P; Wongniramaikul W; Daeid NN
    Talanta; 2013 Oct; 115():143-9. PubMed ID: 24054571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of Chemical Warfare Agents by Colorimetric Sensor Arrays.
    Davidson CE; Dixon MM; Williams BR; Kilper GK; Lim SH; Martino RA; Rhodes P; Hulet MS; Miles RW; Samuels AC; Emanuel PA; Miklos AE
    ACS Sens; 2020 Apr; 5(4):1102-1109. PubMed ID: 32212640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Optoelectronic Nose.
    Li Z; Suslick KS
    Acc Chem Res; 2021 Feb; 54(4):950-960. PubMed ID: 33332086
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Identification of Seven Chemical Warfare Mimics Using a Colorimetric Array.
    Kangas MJ; Ernest A; Lukowicz R; Mora AV; Quossi A; Perez M; Kyes N; Holmes AE
    Sensors (Basel); 2018 Dec; 18(12):. PubMed ID: 30563195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Colorimetric Artificial Olfactory System for Airborne Improvised Explosive Identification.
    Wang G; Li Y; Cai Z; Dou X
    Adv Mater; 2020 Apr; 32(14):e1907043. PubMed ID: 31995260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Colorimetric optical nanosensors for trace explosive detection using metal nanoparticles: advances, pitfalls, and future perspective.
    Adegoke O; Nic Daeid N
    Emerg Top Life Sci; 2021 Sep; 5(3):367-379. PubMed ID: 33960382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Weapons of mass destruction: Overview of the CBRNEs (Chemical, Biological, Radiological, Nuclear, and Explosives).
    Prockop LD
    J Neurol Sci; 2006 Nov; 249(1):50-4. PubMed ID: 16920155
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparing the force for the chemical, biological, radiological, and high yield explosives battlefield; today and tomorrow.
    Matcek G; Crail S; Moore C; Bernardo J
    US Army Med Dep J; 2008; ():36-9. PubMed ID: 20084730
    [No Abstract]   [Full Text] [Related]  

  • 15. Chemical Sniffing Instrumentation for Security Applications.
    Giannoukos S; Brkić B; Taylor S; Marshall A; Verbeck GF
    Chem Rev; 2016 Jul; 116(14):8146-72. PubMed ID: 27388215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Field detection capability of immunochemical assays during criminal investigations involving the use of TNT.
    Romolo FS; Ferri E; Mirasoli M; D'Elia M; Ripani L; Peluso G; Risoluti R; Maiolini E; Girotti S
    Forensic Sci Int; 2015 Jan; 246():25-30. PubMed ID: 25460104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Printed Colorimetric Arrays for the Identification and Quantification of Acids and Bases.
    Kangas MJ; Lukowicz R; Atwater J; Pliego A; Al-Shdifat Y; Havenridge S; Burks R; Garver B; Mayer M; Holmes AE
    Anal Chem; 2018 Aug; 90(16):9990-9996. PubMed ID: 30027740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Visual & reversible sensing of cyanide in real samples by an effective ratiometric colorimetric probe & logic gate application.
    Bhardwaj S; Singh AK
    J Hazard Mater; 2015 Oct; 296():54-60. PubMed ID: 25913671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Ring-Based Sensing Platform for Detecting Chemical Threats.
    Sempionatto JR; Mishra RK; Martín A; Tang G; Nakagawa T; Lu X; Campbell AS; Lyu KM; Wang J
    ACS Sens; 2017 Oct; 2(10):1531-1538. PubMed ID: 29019246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic nanopore sensors for the detection of terrorist agents: current status and challenges.
    Liu A; Zhao Q; Guan X
    Anal Chim Acta; 2010 Aug; 675(2):106-15. PubMed ID: 20800721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.