BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27636822)

  • 1. NtPHYB1
    Zhao J; Han J; Zhang J; Li Z; Yu J; Yu S; Guo Y; Fu Y; Zhang X
    Plant Physiol Biochem; 2016 Dec; 109():45-53. PubMed ID: 27636822
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel R2R3 MYB transcription factor NtMYBJS1 is a methyl jasmonate-dependent regulator of phenylpropanoid-conjugate biosynthesis in tobacco.
    Gális I; Simek P; Narisawa T; Sasaki M; Horiguchi T; Fukuda H; Matsuoka K
    Plant J; 2006 May; 46(4):573-92. PubMed ID: 16640595
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phenylpropanoid pathway.
    Chang J; Luo J; He G
    Acta Biochim Biophys Sin (Shanghai); 2009 Feb; 41(2):123-30. PubMed ID: 19204829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Both cyclic-AMP and cyclic-GMP can act as regulators of the phenylpropanoid pathway in Arabidopsis thaliana seedlings.
    Pietrowska-Borek M; Nuc K
    Plant Physiol Biochem; 2013 Sep; 70():142-9. PubMed ID: 23774376
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering.
    Song MF; Zhang S; Hou P; Shang HZ; Gu HK; Li JJ; Xiao Y; Guo L; Su L; Gao JW; Yang JP
    Plant Mol Biol; 2015 Apr; 87(6):633-43. PubMed ID: 25724426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tobacco O-methyltransferases involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns.
    Maury S; Geoffroy P; Legrand M
    Plant Physiol; 1999 Sep; 121(1):215-24. PubMed ID: 10482677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA interference of the nicotine demethylase gene CYP82E4v1 reduces nornicotine content and enhances Myzus persicae resistance in Nicotiana tabacum L.
    Zhao D; Qin LJ; Zhao DG
    Plant Physiol Biochem; 2016 Oct; 107():214-221. PubMed ID: 27314515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of cell wall related genes in basal and ear internodes of silking brown-midrib-3, caffeic acid O-methyltransferase (COMT) down-regulated, and normal maize plants.
    Guillaumie S; Goffner D; Barbier O; Martinant JP; Pichon M; Barrière Y
    BMC Plant Biol; 2008 Jun; 8():71. PubMed ID: 18582385
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functions of oligochitosan induced protein kinase in tobacco mosaic virus resistance and pathogenesis related proteins in tobacco.
    Yafei C; Yong Z; Xiaoming Z; Peng G; Hailong A; Yuguang D; Yingrong H; Hui L; Yuhong Z
    Plant Physiol Biochem; 2009 Aug; 47(8):724-31. PubMed ID: 19410476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase.
    Shadle GL; Wesley SV; Korth KL; Chen F; Lamb C; Dixon RA
    Phytochemistry; 2003 Sep; 64(1):153-61. PubMed ID: 12946414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 4-coumarate: CoA ligase partitions metabolites for eugenol biosynthesis.
    Rastogi S; Kumar R; Chanotiya CS; Shanker K; Gupta MM; Nagegowda DA; Shasany AK
    Plant Cell Physiol; 2013 Aug; 54(8):1238-52. PubMed ID: 23677922
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unveiling phenylpropanoid regulation: the role of DzMYB activator and repressor in durian (Durio zibethinus) fruit.
    Weerawanich K; Sirikantaramas S
    Plant Cell Rep; 2024 Jun; 43(7):179. PubMed ID: 38913159
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive expression of Arabidopsis MYB transcription factor, AtMYB11, in tobacco modulates flavonoid biosynthesis in favor of flavonol accumulation.
    Pandey A; Misra P; Trivedi PK
    Plant Cell Rep; 2015 Sep; 34(9):1515-28. PubMed ID: 25981047
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alteration of the alkaloid profile in genetically modified tobacco reveals a role of methylenetetrahydrofolate reductase in nicotine N-demethylation.
    Hung CY; Fan L; Kittur FS; Sun K; Qiu J; Tang S; Holliday BM; Xiao B; Burkey KO; Bush LP; Conkling MA; Roje S; Xie J
    Plant Physiol; 2013 Feb; 161(2):1049-60. PubMed ID: 23221678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Post-translational and transcriptional regulation of phenylpropanoid biosynthesis pathway by Kelch repeat F-box protein SAGL1.
    Yu SI; Kim H; Yun DJ; Suh MC; Lee BH
    Plant Mol Biol; 2019 Jan; 99(1-2):135-148. PubMed ID: 30542810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of the function of the photoreceptors phytochrome B and phytochrome D in Nicotiana plumbaginifolia and Arabidopsis thaliana.
    Fernández AP; Gil P; Valkai I; Nagy F; Schäfer E
    Plant Cell Physiol; 2005 May; 46(5):790-6. PubMed ID: 15753105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TaMYB4 cloned from wheat regulates lignin biosynthesis through negatively controlling the transcripts of both cinnamyl alcohol dehydrogenase and cinnamoyl-CoA reductase genes.
    Ma QH; Wang C; Zhu HH
    Biochimie; 2011 Jul; 93(7):1179-86. PubMed ID: 21536093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wound-induced gene expression of putrescine N-methyltransferase in leaves of Nicotiana tabacum.
    Sachan N; Falcone DL
    Phytochemistry; 2002 Dec; 61(7):797-805. PubMed ID: 12453572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antisense-overexpression of the MsCOMT gene induces changes in lignin and total phenol contents in transgenic tobacco plants.
    Seong ES; Yoo JH; Lee JG; Kim HY; Hwang IS; Heo K; Kim JK; Lim JD; Sacks EJ; Yu CY
    Mol Biol Rep; 2013 Feb; 40(2):1979-86. PubMed ID: 23160900
    [TBL] [Abstract][Full Text] [Related]  

  • 20. O-methyltransferase(s)-suppressed plants produce lower amounts of phenolic vir inducers and are less susceptible to Agrobacterium tumefaciens infection.
    Maury S; Delaunay A; Mesnard F; Crônier D; Chabbert B; Geoffroy P; Legrand M
    Planta; 2010 Sep; 232(4):975-86. PubMed ID: 20652308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.