BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27636903)

  • 1. One Single Graphene Oxide Film for Responsive Actuation.
    Cheng H; Zhao F; Xue J; Shi G; Jiang L; Qu L
    ACS Nano; 2016 Oct; 10(10):9529-9535. PubMed ID: 27636903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetrically synchronous reduction and assembly of graphene oxide film on metal foil for moisture responsive actuator.
    Ji X; Ying Y; Ge C; Zhu Y; Wang K; Di Y; Wang S; Li D; Zhang J; Hu P; Qiu Y
    Nanotechnology; 2019 Nov; 30(44):445601. PubMed ID: 31344686
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Liquid Metal-Promoted Graphene Oxide Supramolecular Film for Self-Healing Actuator with Multiple-Stimuli Responses.
    Zhang KQ; Ur Rehman K; Gao J
    Chem Asian J; 2023 Jul; 18(14):e202300409. PubMed ID: 37303118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene Oxide/Nanofiber-Based Actuation Films with Moisture and Photothermal Stimulation Response for Remote Intelligent Control Applications.
    Wang W; Wang S; Xiang C; Liu S; Li M; Wang D
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):48179-48188. PubMed ID: 34586793
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An asymmetric graphene oxide film for developing moisture actuators.
    Qiu Y; Wang M; Zhang W; Liu Y; Li YV; Pan K
    Nanoscale; 2018 Jul; 10(29):14060-14066. PubMed ID: 29999058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multistimulus Responsive Actuator with GO and Carbon Nanotube/PDMS Bilayer Structure for Flexible and Smart Devices.
    Wang W; Xiang C; Zhu Q; Zhong W; Li M; Yan K; Wang D
    ACS Appl Mater Interfaces; 2018 Aug; 10(32):27215-27223. PubMed ID: 30036482
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moisture-Responsive Graphene Actuators Prepared by Two-Beam Laser Interference of Graphene Oxide Paper.
    Jiang HB; Liu Y; Liu J; Li SY; Song YY; Han DD; Ren LQ
    Front Chem; 2019; 7():464. PubMed ID: 31316973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromechanical actuator with controllable motion, fast response rate, and high-frequency resonance based on graphene and polydiacetylene.
    Liang J; Huang L; Li N; Huang Y; Wu Y; Fang S; Oh J; Kozlov M; Ma Y; Li F; Baughman R; Chen Y
    ACS Nano; 2012 May; 6(5):4508-19. PubMed ID: 22512356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots.
    Cheng H; Liu J; Zhao Y; Hu C; Zhang Z; Chen N; Jiang L; Qu L
    Angew Chem Int Ed Engl; 2013 Sep; 52(40):10482-6. PubMed ID: 23946272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reconfigurable, Reversible, and Redefinable Deformation of GO Based on Quantum-Confined-Superfluidics Effect.
    Ma JN; Zhang YL; Han DD; Sun HB
    Nano Lett; 2022 Oct; 22(20):8093-8100. PubMed ID: 36201184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistimulus-Responsive Graphene Oxide/Fe
    Chathuranga H; Marriam I; Chen S; Zhang Z; MacLeod J; Liu Y; Yang H; Yan C
    ACS Appl Mater Interfaces; 2022 Apr; 14(14):16772-16779. PubMed ID: 35362958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust and Highly Sensitive Cellulose Nanofiber-Based Humidity Actuators.
    Wei J; Jia S; Guan J; Ma C; Shao Z
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54417-54427. PubMed ID: 34734698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An intelligent film actuator with multi-level deformation behaviour.
    Gao T; Xu G; Wen Y; Cheng H; Li C; Qu L
    Nanoscale Horiz; 2020 Jul; 5(8):1226-1232. PubMed ID: 32608437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An asymmetrically surface-modified graphene film electrochemical actuator.
    Xie X; Qu L; Zhou C; Li Y; Zhu J; Bai H; Shi G; Dai L
    ACS Nano; 2010 Oct; 4(10):6050-4. PubMed ID: 20828146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Re-shaping graphene hydrogels for effectively enhancing actuation responses.
    Xue J; Hu C; Lv L; Dai L; Qu L
    Nanoscale; 2015 Aug; 7(29):12372-8. PubMed ID: 26130158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reversely Orthogonal Actuation of a Janus-Faced Film Based on Asymmetric Polymer Brush Modification.
    Xiang Y; Li B; Zhang Y; Ma S; Li B; Gao H; Yu B; Li J; Zhou F
    ACS Appl Mater Interfaces; 2019 Oct; 11(39):36073-36080. PubMed ID: 31486632
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser Direct Writing of a High-Performance All-Graphene Humidity Sensor Working in a Novel Sensing Mode for Portable Electronics.
    Cai J; Lv C; Aoyagi E; Ogawa S; Watanabe A
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23987-23996. PubMed ID: 29931979
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantum-Confined-Superfluidics-Enabled Moisture Actuation Based on Unilaterally Structured Graphene Oxide Papers.
    Zhang YL; Liu YQ; Han DD; Ma JN; Wang D; Li XB; Sun HB
    Adv Mater; 2019 Aug; 31(32):e1901585. PubMed ID: 31197895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmentally responsive graphene systems.
    Zhang J; Song L; Zhang Z; Chen N; Qu L
    Small; 2014 Jun; 10(11):2151-64. PubMed ID: 24376152
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-Based Moisture Actuator with Oriented Microstructures Prepared by One-Step Laser Reduction for Accurately Controllable Responsive Direction and Position.
    Lv Y; Li Q; Shi J; Qin Z; Lei Q; Zhao B; Zhu L; Pan K
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12434-12441. PubMed ID: 35254054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.