BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 27636985)

  • 1. Molecular docking study to evaluate the carcinogenic potential and mammalian toxicity of thiophosphonate pesticides by cluster and discriminant analysis.
    Petrescu AM; Ilia G
    Environ Toxicol Pharmacol; 2016 Oct; 47():62-78. PubMed ID: 27636985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential carcinogenicity predicted by computational toxicity evaluation of thiophosphate pesticides using QSTR/QSCarciAR model.
    Petrescu AM; Ilia G
    Drug Chem Toxicol; 2017 Jul; 40(3):263-272. PubMed ID: 27461057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling of human acute toxicity from physicochemical properties and non-vertebrate acute toxicity of the 38 organic chemicals of the MEIC priority list by PLS regression and neural network.
    Calleja MC; Geladi P; Persoone G
    Food Chem Toxicol; 1994 Oct; 32(10):923-41. PubMed ID: 7959448
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting carcinogenicity of diverse chemicals using probabilistic neural network modeling approaches.
    Singh KP; Gupta S; Rai P
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):465-75. PubMed ID: 23856075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of classification and regression based QSAR models to predict rodent carcinogenic potency using oral slope factor.
    Kar S; Deeb O; Roy K
    Ecotoxicol Environ Saf; 2012 Aug; 82():85-95. PubMed ID: 22698880
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of mammalian toxicity of organophosphorus pesticides from QSTR modeling.
    Devillers J
    SAR QSAR Environ Res; 2004; 15(5-6):501-10. PubMed ID: 15669705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring QSAR modeling of toxicity of chemicals on earthworm.
    Ghosh S; Ojha PK; Carnesecchi E; Lombardo A; Roy K; Benfenati E
    Ecotoxicol Environ Saf; 2020 Mar; 190():110067. PubMed ID: 31855788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural alerts for estimating the carcinogenicity of pesticides and biocides.
    Devillers J; Mombelli E; Samsera R
    SAR QSAR Environ Res; 2011 Mar; 22(1-2):89-106. PubMed ID: 21391143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of the electronic and physicochemical parameters on the carcinogenesis activity of some sulfa drugs using QSAR analysis based on genetic-MLR and genetic-PLS.
    Deeb O; Hemmateenejad B; Jaber A; Garduno-Juarez R; Miri R
    Chemosphere; 2007 May; 67(11):2122-30. PubMed ID: 17307223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of rodent carcinogenic potential of naturally occurring chemicals in the human diet using high-throughput QSAR predictive modeling.
    Valerio LG; Arvidson KB; Chanderbhan RF; Contrera JF
    Toxicol Appl Pharmacol; 2007 Jul; 222(1):1-16. PubMed ID: 17482223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative structure-activity relationships for the toxicity of organophosphorus and carbamate pesticides to the Rainbow trout Onchorhyncus mykiss.
    Bermúdez-Saldaña JM; Cronin MT
    Pest Manag Sci; 2006 Sep; 62(9):819-31. PubMed ID: 16763959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Quantitative Structure Activity Relationship for acute oral toxicity of pesticides on rats: Validation, domain of application and prediction.
    Hamadache M; Benkortbi O; Hanini S; Amrane A; Khaouane L; Si Moussa C
    J Hazard Mater; 2016 Feb; 303():28-40. PubMed ID: 26513561
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting Toxicities of Diverse Chemical Pesticides in Multiple Avian Species Using Tree-Based QSAR Approaches for Regulatory Purposes.
    Basant N; Gupta S; Singh KP
    J Chem Inf Model; 2015 Jul; 55(7):1337-48. PubMed ID: 26158470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR modeling of toxicity of diverse organic chemicals to Daphnia magna using 2D and 3D descriptors.
    Kar S; Roy K
    J Hazard Mater; 2010 May; 177(1-3):344-51. PubMed ID: 20045248
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variable selection by an evolution algorithm using modified Cp based on MLR and PLS modeling: QSAR studies of carcinogenicity of aromatic amines.
    Shen Q; Jiang JH; Shen GL; Yu RQ
    Anal Bioanal Chem; 2003 Jan; 375(2):248-54. PubMed ID: 12560968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of variable selection on the modelling of oestrogenicity.
    Ghafourian T; Cronin MT
    SAR QSAR Environ Res; 2005; 16(1-2):171-90. PubMed ID: 15844449
    [TBL] [Abstract][Full Text] [Related]  

  • 17. QSAR models for predicting the acute toxicity of selected organic chemicals with diverse structures to aquatic non-vertebrates and humans.
    Calleja MC; Geladi P; Persoone G
    SAR QSAR Environ Res; 1994; 2(3):193-234. PubMed ID: 8790646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A radial-distribution-function approach for predicting rodent carcinogenicity.
    Morales AH; Cabrera Pérez MA; González MP
    J Mol Model; 2006 Sep; 12(6):769-80. PubMed ID: 16421721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of Oral Acute Toxicity of Organophosphates Using QSAR Methods.
    Kianpour M; Mohammadinasab E; Isfahani TM
    Curr Comput Aided Drug Des; 2021; 17(1):38-56. PubMed ID: 31880265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. QSTR with extended topochemical atom (ETA) indices. 9. Comparative QSAR for the toxicity of diverse functional organic compounds to Chlorella vulgaris using chemometric tools.
    Roy K; Ghosh G
    Chemosphere; 2007 Nov; 70(1):1-12. PubMed ID: 17765287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.