These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27637005)

  • 1. Retinal image quality assessment based on image clarity and content.
    Abdel-Hamid L; El-Rafei A; El-Ramly S; Michelson G; Hornegger J
    J Biomed Opt; 2016 Sep; 21(9):96007. PubMed ID: 27637005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. No-reference quality index for color retinal images.
    Abdel-Hamid L; El-Rafei A; Michelson G
    Comput Biol Med; 2017 Nov; 90():68-75. PubMed ID: 28957660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Appearance and characterization of fruit image textures for quality sorting using wavelet transform and genetic algorithms.
    Khoje S
    J Texture Stud; 2018 Feb; 49(1):65-83. PubMed ID: 28737267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Color Retinal Image Enhancement Based on Luminosity and Contrast Adjustment.
    Zhou M; Jin K; Wang S; Ye J; Qian D
    IEEE Trans Biomed Eng; 2018 Mar; 65(3):521-527. PubMed ID: 28475043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Retinal Fundus Image Quality Assessment With Swin-Transformer-Based Learning Across Multiple Color-Spaces.
    Huang C; Jiang Y; Yang X; Wei C; Chen H; Xiong W; Lin H; Wang X; Tian T; Tan H
    Transl Vis Sci Technol; 2024 Apr; 13(4):8. PubMed ID: 38568606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated image quality appraisal through partial least squares discriminant analysis.
    Ramani RG; Shanthamalar JJ
    Int J Comput Assist Radiol Surg; 2022 Jul; 17(7):1367-1377. PubMed ID: 35650346
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of Global Features for the Automatic Quality Assessment of Retinal Images.
    Jiménez-García J; Romero-Oraá R; García M; López-Gálvez MI; Hornero R
    Entropy (Basel); 2019 Mar; 21(3):. PubMed ID: 33267025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated assessment of diabetic retinal image quality based on clarity and field definition.
    Fleming AD; Philip S; Goatman KA; Olson JA; Sharp PF
    Invest Ophthalmol Vis Sci; 2006 Mar; 47(3):1120-5. PubMed ID: 16505050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fast processing of microscopic images using object-based extended depth of field.
    Intarapanich A; Kaewkamnerd S; Pannarut M; Shaw PJ; Tongsima S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 19):516. PubMed ID: 28155648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Detection of Hard Exudates in Color Retinal Images Using Dynamic Threshold and SVM Classification: Algorithm Development and Evaluation.
    Long S; Huang X; Chen Z; Pardhan S; Zheng D
    Biomed Res Int; 2019; 2019():3926930. PubMed ID: 30809539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted From Fundus Images.
    Maheshwari S; Pachori RB; Acharya UR
    IEEE J Biomed Health Inform; 2017 May; 21(3):803-813. PubMed ID: 28113877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-processing, registration and selection of adaptive optics corrected retinal images.
    Ramaswamy G; Devaney N
    Ophthalmic Physiol Opt; 2013 Jul; 33(4):527-39. PubMed ID: 23627927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Content Based Image Retrieval by Using Color Descriptor and Discrete Wavelet Transform.
    Ashraf R; Ahmed M; Jabbar S; Khalid S; Ahmad A; Din S; Jeon G
    J Med Syst; 2018 Jan; 42(3):44. PubMed ID: 29372327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retinal image quality assessment using deep learning.
    Zago GT; Andreão RV; Dorizzi B; Teatini Salles EO
    Comput Biol Med; 2018 Dec; 103():64-70. PubMed ID: 30340214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An enhancement method for color retinal images based on image formation model.
    Xiong L; Li H; Xu L
    Comput Methods Programs Biomed; 2017 May; 143():137-150. PubMed ID: 28391812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quaternion wavelet transform based full reference image quality assessment for multiply distorted images.
    Li C; Li Y; Yuan Y; Wu X; Sang Q
    PLoS One; 2018; 13(6):e0199430. PubMed ID: 29949615
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated clarity assessment of retinal images using regionally based structural and statistical measures.
    Fleming AD; Philip S; Goatman KA; Sharp PF; Olson JA
    Med Eng Phys; 2012 Sep; 34(7):849-59. PubMed ID: 22041129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quality and content analysis of fundus images using deep learning.
    Chalakkal RJ; Abdulla WH; Thulaseedharan SS
    Comput Biol Med; 2019 May; 108():317-331. PubMed ID: 31028967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.