These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27637451)

  • 1. Polysaccharide type and concentration affect nanocomplex formation in associative mixture with β-lactoglobulin.
    Hosseini SM; Emam-Djomeh Z; Negahdarifar M; Sepeidnameh M; Razavi SH; Van der Meeren P
    Int J Biol Macromol; 2016 Dec; 93(Pt A):724-730. PubMed ID: 27637451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex coacervation between beta-lactoglobulin and Acacia gum: a nucleation and growth mechanism.
    Sanchez C; Mekhloufi G; Renard D
    J Colloid Interface Sci; 2006 Jul; 299(2):867-73. PubMed ID: 16530214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex coacervation of β-lactoglobulin - κ-carrageenan aqueous mixtures as affected by polysaccharide sonication.
    Hosseini SM; Emam-Djomeh Z; Razavi SH; Moosavi-Movahedi AA; Saboury AA; Mohammadifar MA; Farahnaky A; Atri MS; Van der Meeren P
    Food Chem; 2013 Nov; 141(1):215-22. PubMed ID: 23768350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of functional nanoparticles formation in associative mixture of water-soluble portion of Farsi gum and beta-lactoglobulin.
    Hadian M; Hosseini SMH; Farahnaky A; Mesbahi GR
    Int J Biol Macromol; 2017 Sep; 102():1297-1303. PubMed ID: 28495628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH-Induced structural transitions during complexation and coacervation of beta-lactoglobulin and acacia gum.
    Mekhloufi G; Sanchez C; Renard D; Guillemin S; Hardy J
    Langmuir; 2005 Jan; 21(1):386-94. PubMed ID: 15620329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and Characterization of β-Lactoglobulin and Gum Arabic Complexes: the Role of pH.
    Wang Z; Liu J; Gao J; Cao M; Ren G; Xie H; Yao M
    Molecules; 2020 Aug; 25(17):. PubMed ID: 32854454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic characterization of acacia gum-beta-lactoglobulin complex coacervation.
    Aberkane L; Jasniewski J; Gaiani C; Scher J; Sanchez C
    Langmuir; 2010 Aug; 26(15):12523-33. PubMed ID: 20586462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability and structure of protein-polysaccharide coacervates in the presence of protein aggregates.
    Sanchez C; Renard D
    Int J Pharm; 2002 Aug; 242(1-2):319-24. PubMed ID: 12176271
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gelation of native beta-lactoglobulin induced by electrostatic attractive interaction with xanthan gum.
    Laneuville SI; Turgeon SL; Sanchez C; Paquin P
    Langmuir; 2006 Aug; 22(17):7351-7. PubMed ID: 16893237
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving the emulsifying properties of β-lactoglobulin-wild almond gum (Amygdalus scoparia Spach) exudate complexes by heat.
    Golkar A; Nasirpour A; Keramat J
    J Sci Food Agric; 2017 Jan; 97(1):341-349. PubMed ID: 27059005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pH-Dependent aggregation and disaggregation of native β-lactoglobulin in low salt.
    Yan Y; Seeman D; Zheng B; Kizilay E; Xu Y; Dubin PL
    Langmuir; 2013 Apr; 29(14):4584-93. PubMed ID: 23458495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coacervation and precipitation in polysaccharide-protein systems.
    Comert F; Malanowski AJ; Azarikia F; Dubin PL
    Soft Matter; 2016 May; 12(18):4154-61. PubMed ID: 27071378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vitamin D3 cress seed mucilage -β-lactoglobulin nanocomplexes: Synthesis, characterization, encapsulation and simulated intestinal fluid in vitro release.
    Taheri A; Kashaninejad M; Tamaddon AM; Jafari SM
    Carbohydr Polym; 2021 Mar; 256():117420. PubMed ID: 33483012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stabilization mechanism of oil-in-water emulsions by β-lactoglobulin and gum arabic.
    Bouyer E; Mekhloufi G; Le Potier I; de Kerdaniel Tdu F; Grossiord JL; Rosilio V; Agnely F
    J Colloid Interface Sci; 2011 Feb; 354(2):467-77. PubMed ID: 21145063
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polysaccharide zeta-potentials and protein-affinity.
    Comert F; Azarikia F; Dubin PL
    Phys Chem Chem Phys; 2017 Aug; 19(31):21090-21094. PubMed ID: 28792026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of formation and functional properties of conjugates prepared by dry-state incubation of beta-lactoglobulin/acacia gum electrostatic complexes.
    Schmitt C; Bovay C; Frossard P
    J Agric Food Chem; 2005 Nov; 53(23):9089-99. PubMed ID: 16277407
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Complex Coacervation of Milk Proteins with Sodium Alginate.
    Ghorbani Gorji E; Waheed A; Ludwig R; Toca-Herrera JL; Schleining G; Ghorbani Gorji S
    J Agric Food Chem; 2018 Mar; 66(12):3210-3220. PubMed ID: 29489360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Beta-lactoglobulin/polysaccharide interactions during in vitro gastric and pancreatic hydrolysis assessed in dialysis bags of different molecular weight cut-offs.
    Mouécoucou J; Villaume C; Sanchez C; Méjean L
    Biochim Biophys Acta; 2004 Jan; 1670(2):105-12. PubMed ID: 14738992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biopolymer nanoparticles from heat-treated electrostatic protein-polysaccharide complexes: factors affecting particle characteristics.
    Jones OG; McClements DJ
    J Food Sci; 2010 Mar; 75(2):N36-43. PubMed ID: 20492252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein-selective coacervation with hyaluronic acid.
    Du X; Dubin PL; Hoagland DA; Sun L
    Biomacromolecules; 2014 Mar; 15(3):726-34. PubMed ID: 24517623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.