BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 27637867)

  • 1. Comparison of two series of non-invasive instruments used for the skin physiological properties measurements: the DermaLab
    Hua W; Fan LM; Dai R; Luan M; Xie H; Li AQ; Li L
    Skin Res Technol; 2017 Feb; 23(1):70-78. PubMed ID: 27637867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of two series of non-invasive instruments used for the skin physiological properties measurements: the 'Soft Plus' from Callegari S.p.A vs. the series of detectors from Courage & Khazaka.
    Hua W; Xie H; Chen T; Li L
    Skin Res Technol; 2014 Feb; 20(1):74-80. PubMed ID: 23772826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The investigation of the skin biophysical measurements focusing on daily activities, skin care habits, and gender differences.
    Hadi H; Awadh AI; Hanif NM; Md Sidik NF; Mohd Rani MR; Suhaimi MS
    Skin Res Technol; 2016 May; 22(2):247-54. PubMed ID: 26333416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A closed unventilated chamber for the measurement of transepidermal water loss.
    Nuutinen J; Alanen E; Autio P; Lahtinen MR; Harvima I; Lahtinen T
    Skin Res Technol; 2003 May; 9(2):85-9. PubMed ID: 12709124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A cross-sectional study of variations in the biophysical parameters of skin among healthy volunteers.
    Mehta HH; Nikam VV; Jaiswal CR; Mehta HB
    Indian J Dermatol Venereol Leprol; 2018; 84(4):521. PubMed ID: 29491191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the stratum corneum barrier function by transepidermal water loss measurements: comparison between two commercial instruments: Evaporimeter and Tewameter.
    Barel AO; Clarys P
    Skin Pharmacol; 1995; 8(4):186-95. PubMed ID: 7488395
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The seasonal variation in skin hydration, sebum, scaliness, brightness and elasticity in Korean females.
    Nam GW; Baek JH; Koh JS; Hwang JK
    Skin Res Technol; 2015 Feb; 21(1):1-8. PubMed ID: 24528115
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of closed chamber and open chamber evaporimetry.
    Cohen JC; Hartman DG; Garofalo MJ; Basehoar A; Raynor B; Ashbrenner E; Akin FJ
    Skin Res Technol; 2009 Feb; 15(1):51-4. PubMed ID: 19152579
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of the VapoMeter, a closed unventilated chamber system to assess transepidermal water loss vs. the open chamber Tewameter.
    De Paepe K; Houben E; Adam R; Wiesemann F; Rogiers V
    Skin Res Technol; 2005 Feb; 11(1):61-9. PubMed ID: 15691261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Side-by-side comparison of an open-chamber (TM 300) and a closed-chamber (Vapometer™) transepidermal water loss meter.
    Steiner M; Aikman-Green S; Prescott GJ; Dick FD
    Skin Res Technol; 2011 Aug; 17(3):366-72. PubMed ID: 21492241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of the skin: a comparison between two suction cup methods.
    Pedersen L; Hansen B; Jemec GB
    Skin Res Technol; 2003 May; 9(2):111-5. PubMed ID: 12709128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measurement of elasticity and transepidermal water loss rate of burn scars with the Dermalab(®).
    Anthonissen M; Daly D; Fieuws S; Massagé P; Van Brussel M; Vranckx J; Van den Kerckhove E
    Burns; 2013 May; 39(3):420-8. PubMed ID: 23000371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models.
    Fluhr JW; Feingold KR; Elias PM
    Exp Dermatol; 2006 Jul; 15(7):483-92. PubMed ID: 16761956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of a hand-held evaporimeter (VapoMeter) for the measurement of transepidermal water loss in healthy dogs.
    Lau-Gillard PJ; Hill PB; Chesney CJ; Budleigh C; Immonen A
    Vet Dermatol; 2010 Apr; 21(2):136-45. PubMed ID: 19961567
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the measuring efficacy of transepidermal water loss of a reasonably priced, portable closed-chamber system device H4500 with that of rather expensive, conventional devices such as Tewameter
    Kikuchi K; Asano M; Tagami H; Kato M; Aiba S
    Skin Res Technol; 2017 Nov; 23(4):597-601. PubMed ID: 28517733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin physiology in men and women: in vivo evaluation of 300 people including TEWL, SC hydration, sebum content and skin surface pH.
    Luebberding S; Krueger N; Kerscher M
    Int J Cosmet Sci; 2013 Oct; 35(5):477-83. PubMed ID: 23713991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Measuring transepidermal water loss: a comparative in vivo study of condenser-chamber, unventilated-chamber and open-chamber systems.
    Farahmand S; Tien L; Hui X; Maibach HI
    Skin Res Technol; 2009 Nov; 15(4):392-8. PubMed ID: 19832948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaporimetry in man.
    Shah JH; Zhai H; Maibach HI
    Skin Res Technol; 2005 Aug; 11(3):205-8. PubMed ID: 15998333
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance.
    Imhof RE; De Jesus ME; Xiao P; Ciortea LI; Berg EP
    Int J Cosmet Sci; 2009 Apr; 31(2):97-118. PubMed ID: 19175433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of biophysical properties of skin measured by using non-invasive techniques in the KM mice following 595 nm pulsed dye, 1064 nm Q-Switched Nd:YAG and 1320 nm Nd:YAG laser non-ablative rejuvenation.
    Dang Y; Ren Q; Li W; Yang Q; Zhang J
    Skin Res Technol; 2006 May; 12(2):119-25. PubMed ID: 16626386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.