BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 27638266)

  • 1. Separation of milk fat globules via microfiltration: Effect of diafiltration media and opportunities for stream valorization.
    Jukkola A; Partanen R; Rojas OJ; Heino A
    J Dairy Sci; 2016 Nov; 99(11):8644-8654. PubMed ID: 27638266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Filtration of milk fat globule membrane fragments from acid buttermilk cheese whey.
    Rombaut R; Dejonckheere V; Dewettinck K
    J Dairy Sci; 2007 Apr; 90(4):1662-73. PubMed ID: 17369206
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfiltration of buttermilk and washed cream buttermilk for concentration of milk fat globule membrane components.
    Morin P; Britten M; Jiménez-Flores R; Pouliot Y
    J Dairy Sci; 2007 May; 90(5):2132-40. PubMed ID: 17430910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of a novel ingredient from buttermilk.
    Corredig M; Roesch RR; Dalgleish DG
    J Dairy Sci; 2003 Sep; 86(9):2744-50. PubMed ID: 14507009
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of composition and emulsifying properties of MFGM materials prepared from different dairy sources by microfiltration.
    Miocinovic J; Le Trung T; Fredrick E; Van der Meeren P; Pudja P; Dewettinck K
    Food Sci Technol Int; 2014 Sep; 20(6):441-51. PubMed ID: 23751553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfiltration of raw whole milk to select fractions with different fat globule size distributions: process optimization and analysis.
    Michalski MC; Leconte N; Briard-Bion V; Fauquant J; Maubois JL; Goudédranche H
    J Dairy Sci; 2006 Oct; 89(10):3778-90. PubMed ID: 16960052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk.
    Svanborg S; Johansen AG; Abrahamsen RK; Skeie SB
    J Dairy Sci; 2015 Sep; 98(9):5829-40. PubMed ID: 26142868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Process efficiency of casein separation from milk using polymeric spiral-wound microfiltration membranes.
    Mercier-Bouchard D; Benoit S; Doyen A; Britten M; Pouliot Y
    J Dairy Sci; 2017 Nov; 100(11):8838-8848. PubMed ID: 28843690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization of protein fractionation by skim milk microfiltration: Choice of ceramic membrane pore size and filtration temperature.
    Jørgensen CE; Abrahamsen RK; Rukke EO; Johansen AG; Schüller RB; Skeie SB
    J Dairy Sci; 2016 Aug; 99(8):6164-6179. PubMed ID: 27265169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A process efficiency assessment of serum protein removal from milk using ceramic graded permeability microfiltration membrane.
    Tremblay-Marchand D; Doyen A; Britten M; Pouliot Y
    J Dairy Sci; 2016 Jul; 99(7):5230-5243. PubMed ID: 27132105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfiltration of butter serum upon casein micelle destabilization.
    Rombaut R; Dejonckheere V; Dewettinck K
    J Dairy Sci; 2006 Jun; 89(6):1915-25. PubMed ID: 16702255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Milk fat globule membrane isolated from buttermilk or whey cream and their lipid components inhibit infectivity of rotavirus in vitro.
    Fuller KL; Kuhlenschmidt TB; Kuhlenschmidt MS; Jiménez-Flores R; Donovan SM
    J Dairy Sci; 2013 Jun; 96(6):3488-97. PubMed ID: 23548280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of industrial cream heat treatments on the protein composition of the milk fat globule membrane.
    Hansen SF; Petrat-Melin B; Rasmusen JT; Larsen LB; Wiking L
    J Dairy Res; 2020 Feb; 87(1):89-93. PubMed ID: 32026791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of soluble calcium and lactose on limiting flux and serum protein removal during skim milk microfiltration.
    Adams MC; Hurt EE; Barbano DM
    J Dairy Sci; 2015 Nov; 98(11):7483-97. PubMed ID: 26298759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of buttermilk made from creams with different heat treatment histories on properties of rennet gels and model cheeses.
    Morin P; Pouliot Y; Britten M
    J Dairy Sci; 2008 Mar; 91(3):871-82. PubMed ID: 18292242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emulsifying properties of fractions prepared from commercial buttermilk by microfiltration.
    Roesch RR; Rincon A; Corredig M
    J Dairy Sci; 2004 Dec; 87(12):4080-7. PubMed ID: 15545369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Goat α(s1)-casein genotype affects milk fat globule physicochemical properties and the composition of the milk fat globule membrane.
    Cebo C; Lopez C; Henry C; Beauvallet C; Ménard O; Bevilacqua C; Bouvier F; Caillat H; Martin P
    J Dairy Sci; 2012 Nov; 95(11):6215-29. PubMed ID: 22921619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focus on the supramolecular structure of milk fat in dairy products.
    Lopez C
    Reprod Nutr Dev; 2005; 45(4):497-511. PubMed ID: 16045897
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison of the heat stability of fresh milk protein concentrates obtained by microfiltration, ultrafiltration and diafiltration.
    Renhe IRT; Zhao Z; Corredig M
    J Dairy Res; 2019 Aug; 86(3):347-353. PubMed ID: 31298166
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions of fat globule surface proteins during concentration of whole milk in a pilot-scale multiple-effect evaporator.
    Ye A; Singh H; Taylor MW; Anema SG
    J Dairy Res; 2004 Nov; 71(4):471-9. PubMed ID: 15605714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.