BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27638456)

  • 1. Colloidal aggregation and structural assembly of aspect ratio variant goethite (α-FeOOH) with nC
    Ghosh S; Pradhan NR; Mashayekhi H; Zhang Q; Pan B; Xing B
    Environ Pollut; 2016 Dec; 219():1049-1059. PubMed ID: 27638456
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binary short-range colloidal assembly of magnetic iron oxides nanoparticles and fullerene (nC60) in environmental media.
    Ghosh S; Pradhan NR; Mashayekhi H; Dickert S; Thantirige R; Tuominen MT; Tao S; Xing B
    Environ Sci Technol; 2014 Oct; 48(20):12285-91. PubMed ID: 25222921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined effects of aqueous suspensions of fullerene and humic acid on the availability of polycyclic aromatic hydrocarbons: evaluated with negligible depletion solid-phase microextraction.
    Hu X; Li J; Chen Q; Lin Z; Yin D
    Sci Total Environ; 2014 Sep; 493():12-21. PubMed ID: 24937488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption, desorption, and surface-promoted hydrolysis of glucose-1-phosphate in aqueous goethite (α-FeOOH) suspensions.
    Olsson R; Giesler R; Loring JS; Persson P
    Langmuir; 2010 Dec; 26(24):18760-70. PubMed ID: 21087005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the preparation method and humic-acid modification on the mobility and contaminant-mobilizing capability of fullerene nanoparticles (nC60).
    Wang L; Hou L; Wang X; Chen W
    Environ Sci Process Impacts; 2014 May; 16(6):1282-9. PubMed ID: 24463710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport and retention of fullerene nanoparticles in natural soils.
    Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD
    J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Goethite colloid enhanced Pu transport through a single saturated fracture in granite.
    Lin J; Dang H; Xie J; Li M; Zhou G; Zhang J; Zhang H; Yi X
    J Contam Hydrol; 2014 Aug; 164():251-8. PubMed ID: 25016587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications.
    Chen KL; Elimelech M
    Environ Sci Technol; 2008 Oct; 42(20):7607-14. PubMed ID: 18983082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex interplay between formation routes and natural organic matter modification controls capabilities of C
    Hou L; Fortner JD; Wang X; Zhang C; Wang L; Chen W
    J Environ Sci (China); 2017 Jan; 51():315-323. PubMed ID: 28115144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Character of Humic Substances as a Predictor for Goethite Nanoparticle Reactivity and Aggregation.
    Vindedahl AM; Stemig MS; Arnold WA; Penn RL
    Environ Sci Technol; 2016 Feb; 50(3):1200-8. PubMed ID: 26790005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC60).
    Qu X; Alvarez PJ; Li Q
    Environ Sci Technol; 2012 Dec; 46(24):13455-62. PubMed ID: 23157776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of attached phase soil and sediment organic matter physicochemical properties on fullerene (nC60) attachment.
    McNew CP; LeBoeuf EJ
    Chemosphere; 2015 Nov; 139():609-16. PubMed ID: 25600319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Humic acid induced weak attachment of fullerene nC
    Wang Z; Li T; Shen C; Shang J; Shi K; Zhang Y; Li B
    J Contam Hydrol; 2020 May; 231():103630. PubMed ID: 32169749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates.
    Moor KJ; Snow SD; Kim JH
    Environ Sci Technol; 2015 May; 49(10):5990-8. PubMed ID: 25950275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters.
    Kumpulainen S; von der Kammer F; Hofmann T
    Water Res; 2008 Apr; 42(8-9):2051-60. PubMed ID: 18221768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible-light photo-Fenton oxidation of phenol with rGO-α-FeOOH supported on Al-doped mesoporous silica (MCM-41) at neutral pH: Performance and optimization of the catalyst.
    Wang Y; Liang M; Fang J; Fu J; Chen X
    Chemosphere; 2017 Sep; 182():468-476. PubMed ID: 28521161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plutonium partitioning in water-granite and water-α-FeOOH systems: from a viewpoint of a three-phase system.
    Lin J; Dang H; Xie J; Zhou G; Li M; Zhang J
    Environ Sci Process Impacts; 2015 Sep; 17(9):1672-9. PubMed ID: 26244590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of some environmentally relevant parameters on the sorption of polycyclic aromatic hydrocarbons to aqueous suspensions of fullerene.
    Hu X; Liu J; Mayer P; Jiang G
    Environ Toxicol Chem; 2008 Sep; 27(9):1868-74. PubMed ID: 19086314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncontrolled variability in the extinction spectra of C60 nanoparticle suspensions.
    Chang X; Vikesland PJ
    Langmuir; 2013 Aug; 29(31):9685-93. PubMed ID: 23800184
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roles of phytoplankton- and macrophyte-derived dissolved organic matter in sulfamethazine adsorption on goethite.
    Bai L; Cao C; Wang C; Wang C; Zhang H; Jiang H
    Environ Pollut; 2017 Nov; 230():87-95. PubMed ID: 28649045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.