These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
333 related articles for article (PubMed ID: 27638799)
1. A new biological process for short-chain fatty acid generation from waste activated sludge improved by Clostridiales enhancement. Zhang D; Fu X; Dai X; Chen Y; Dai L Environ Sci Pollut Res Int; 2016 Dec; 23(23):23972-23982. PubMed ID: 27638799 [TBL] [Abstract][Full Text] [Related]
2. A new process to improve short-chain fatty acids and bio-methane generation from waste activated sludge. Dong B; Gao P; Zhang D; Chen Y; Dai L; Dai X J Environ Sci (China); 2016 May; 43():159-168. PubMed ID: 27155421 [TBL] [Abstract][Full Text] [Related]
3. Pyrosequencing reveals the key microorganisms involved in sludge alkaline fermentation for efficient short-chain fatty acids production. Zheng X; Su Y; Li X; Xiao N; Wang D; Chen Y Environ Sci Technol; 2013 May; 47(9):4262-8. PubMed ID: 23544425 [TBL] [Abstract][Full Text] [Related]
4. Improved bioproduction of short-chain fatty acids from waste activated sludge by perennial ryegrass addition. Jia S; Dai X; Zhang D; Dai L; Wang R; Zhao J Water Res; 2013 Sep; 47(13):4576-84. PubMed ID: 23764607 [TBL] [Abstract][Full Text] [Related]
5. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
7. Free nitrous acid serving as a pretreatment method for alkaline fermentation to enhance short-chain fatty acid production from waste activated sludge. Zhao J; Wang D; Li X; Yang Q; Chen H; Zhong Y; Zeng G Water Res; 2015 Jul; 78():111-20. PubMed ID: 25935366 [TBL] [Abstract][Full Text] [Related]
8. New sludge pretreatment method to improve methane production in waste activated sludge digestion. Zhang D; Chen Y; Zhao Y; Zhu X Environ Sci Technol; 2010 Jun; 44(12):4802-8. PubMed ID: 20496937 [TBL] [Abstract][Full Text] [Related]
9. Excess sludge and herbaceous plant co-digestion for volatile fatty acids generation improved by protein and cellulose conversion enhancement. Zhang D; Fu X; Jia S; Dai L; Wu B; Dai X Environ Sci Pollut Res Int; 2016 Jan; 23(2):1492-504. PubMed ID: 26374544 [TBL] [Abstract][Full Text] [Related]
10. Biological short-chain fatty acids (SCFAs) production from waste-activated sludge affected by surfactant. Jiang S; Chen Y; Zhou Q; Gu G Water Res; 2007 Jul; 41(14):3112-20. PubMed ID: 17499838 [TBL] [Abstract][Full Text] [Related]
11. Triclocarban enhances short-chain fatty acids production from anaerobic fermentation of waste activated sludge. Wang Y; Wang D; Liu Y; Wang Q; Chen F; Yang Q; Li X; Zeng G; Li H Water Res; 2017 Dec; 127():150-161. PubMed ID: 29045805 [TBL] [Abstract][Full Text] [Related]
12. Unveiling the mechanisms of how cationic polyacrylamide affects short-chain fatty acids accumulation during long-term anaerobic fermentation of waste activated sludge. Liu X; Xu Q; Wang D; Wu Y; Yang Q; Liu Y; Wang Q; Li X; Li H; Zeng G; Yang G Water Res; 2019 May; 155():142-151. PubMed ID: 30844675 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of waste activated sludge protein conversion and volatile fatty acids accumulation during waste activated sludge anaerobic fermentation by carbohydrate substrate addition: the effect of pH. Feng L; Chen Y; Zheng X Environ Sci Technol; 2009 Jun; 43(12):4373-80. PubMed ID: 19603649 [TBL] [Abstract][Full Text] [Related]
14. Mechanisms of free nitrous acid and freezing co-pretreatment enhancing short-chain fatty acids production from waste activated sludge anaerobic fermentation. Wu Y; Song K; Sun X; Ngo H; Guo W; Nghiem LD; Wang Q Chemosphere; 2019 Sep; 230():536-543. PubMed ID: 31125882 [TBL] [Abstract][Full Text] [Related]
15. Free ammonia aids ultrasound pretreatment to enhance short-chain fatty acids production from waste activated sludge. Wang D; Huang Y; Xu Q; Liu X; Yang Q; Li X Bioresour Technol; 2019 Mar; 275():163-171. PubMed ID: 30584961 [TBL] [Abstract][Full Text] [Related]
16. Short-chain fatty acid production from different biological phosphorus removal sludges: the influences of PHA and Gram-staining bacteria. Wang D; Chen Y; Zheng X; Li X; Feng L Environ Sci Technol; 2013 Mar; 47(6):2688-95. PubMed ID: 23398351 [TBL] [Abstract][Full Text] [Related]
17. Methane production and microbial community structure for alkaline pretreated waste activated sludge. Sun R; Xing D; Jia J; Zhou A; Zhang L; Ren N Bioresour Technol; 2014 Oct; 169():496-501. PubMed ID: 25086434 [TBL] [Abstract][Full Text] [Related]
18. Effect of humic acids with different characteristics on fermentative short-chain fatty acids production from waste activated sludge. Liu K; Chen Y; Xiao N; Zheng X; Li M Environ Sci Technol; 2015 Apr; 49(8):4929-36. PubMed ID: 25825920 [TBL] [Abstract][Full Text] [Related]
19. Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: effect of pH. Zhang P; Chen Y; Zhou Q Water Res; 2009 Aug; 43(15):3735-42. PubMed ID: 19555988 [TBL] [Abstract][Full Text] [Related]
20. Polycyclic Aromatic Hydrocarbon Affects Acetic Acid Production during Anaerobic Fermentation of Waste Activated Sludge by Altering Activity and Viability of Acetogen. Luo J; Chen Y; Feng L Environ Sci Technol; 2016 Jul; 50(13):6921-9. PubMed ID: 27267805 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]