BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 27638873)

  • 21. Targeting GPCR-Gβγ-GRK2 signaling as a novel strategy for treating cardiorenal pathologies.
    Rudomanova V; Blaxall BC
    Biochim Biophys Acta Mol Basis Dis; 2017 Aug; 1863(8):1883-1892. PubMed ID: 28130200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Taking the heart failure battle inside the cell: small molecule targeting of Gβγ subunits.
    Kamal FA; Smrcka AV; Blaxall BC
    J Mol Cell Cardiol; 2011 Oct; 51(4):462-7. PubMed ID: 21256851
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gβγ interacts with mTOR and promotes its activation.
    Robles-Molina E; Dionisio-Vicuña M; Guzmán-Hernández ML; Reyes-Cruz G; Vázquez-Prado J
    Biochem Biophys Res Commun; 2014 Feb; 444(2):218-23. PubMed ID: 24462769
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gbetagamma signaling and Ca2+ mobilization co-operate synergistically in a Sos and Rac-dependent manner in the activation of JNK by Gq-coupled receptors.
    Chan AS; Wong YH
    Cell Signal; 2004 Jul; 16(7):823-36. PubMed ID: 15115661
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mechanisms of Gβγ Release upon GPCR Activation.
    Martemyanov KA
    Trends Biochem Sci; 2021 Sep; 46(9):703-704. PubMed ID: 34034924
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Subtype-dependent regulation of Gβγ signalling.
    Tennakoon M; Senarath K; Kankanamge D; Ratnayake K; Wijayaratna D; Olupothage K; Ubeysinghe S; Martins-Cannavino K; Hébert TE; Karunarathne A
    Cell Signal; 2021 Jun; 82():109947. PubMed ID: 33582184
    [TBL] [Abstract][Full Text] [Related]  

  • 27. PREX1 integrates G protein-coupled receptor and phosphoinositide 3-kinase signaling to promote glioblastoma invasion.
    Gont A; Daneshmand M; Woulfe J; Lavictoire SJ; Lorimer IA
    Oncotarget; 2017 Jan; 8(5):8559-8573. PubMed ID: 28051998
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Clusterin stimulates the chemotactic migration of macrophages through a pertussis toxin sensitive G-protein-coupled receptor and Gβγ-dependent pathways.
    Kang BH; Shim YJ; Tae YK; Song JA; Choi BK; Park IS; Min BH
    Biochem Biophys Res Commun; 2014 Mar; 445(3):645-50. PubMed ID: 24569077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two independent but synchronized Gβγ subunit-controlled pathways are essential for trailing-edge retraction during macrophage migration.
    Siripurapu P; Kankanamge D; Ratnayake K; Senarath K; Karunarathne A
    J Biol Chem; 2017 Oct; 292(42):17482-17495. PubMed ID: 28864771
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanistic pathways and biological roles for receptor-independent activators of G-protein signaling.
    Blumer JB; Smrcka AV; Lanier SM
    Pharmacol Ther; 2007 Mar; 113(3):488-506. PubMed ID: 17240454
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gβγ subunits-Different spaces, different faces.
    Khan SM; Sung JY; Hébert TE
    Pharmacol Res; 2016 Sep; 111():434-441. PubMed ID: 27378564
    [TBL] [Abstract][Full Text] [Related]  

  • 32. ROCK activity and the Gβγ complex mediate chemotactic migration of mouse bone marrow-derived stromal cells.
    Ryan CM; Brown JA; Bourke E; Prendergast ÁM; Kavanagh C; Liu Z; Owens P; Shaw G; Kolch W; O'Brien T; Barry FP
    Stem Cell Res Ther; 2015 Jul; 6():136. PubMed ID: 26204937
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets.
    Xu X; Wu G
    Trends Pharmacol Sci; 2023 Feb; 44(2):98-111. PubMed ID: 36494204
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ric-8 enhances G protein betagamma-dependent signaling in response to betagamma-binding peptides in intact cells.
    Malik S; Ghosh M; Bonacci TM; Tall GG; Smrcka AV
    Mol Pharmacol; 2005 Jul; 68(1):129-36. PubMed ID: 15802611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gbetagamma signaling promotes breast cancer cell migration and invasion.
    Kirui JK; Xie Y; Wolff DW; Jiang H; Abel PW; Tu Y
    J Pharmacol Exp Ther; 2010 May; 333(2):393-403. PubMed ID: 20110378
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane translocation of P-Rex1 is mediated by G protein betagamma subunits and phosphoinositide 3-kinase.
    Barber MA; Donald S; Thelen S; Anderson KE; Thelen M; Welch HC
    J Biol Chem; 2007 Oct; 282(41):29967-76. PubMed ID: 17698854
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Emerging non-canonical functions for heterotrimeric G proteins in cellular signaling.
    Ahmed SM; Angers S
    J Recept Signal Transduct Res; 2013 Jun; 33(3):177-83. PubMed ID: 23721574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. β
    Jean-Alphonse FG; Wehbi VL; Chen J; Noda M; Taboas JM; Xiao K; Vilardaga JP
    Nat Chem Biol; 2017 Mar; 13(3):259-261. PubMed ID: 28024151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gbeta3 forms distinct dimers with specific Ggamma subunits and preferentially activates the beta3 isoform of phospholipase C.
    Poon LS; Chan AS; Wong YH
    Cell Signal; 2009 May; 21(5):737-44. PubMed ID: 19168127
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The expanding roles of Gβγ subunits in G protein-coupled receptor signaling and drug action.
    Khan SM; Sleno R; Gora S; Zylbergold P; Laverdure JP; Labbé JC; Miller GJ; Hébert TE
    Pharmacol Rev; 2013 Apr; 65(2):545-77. PubMed ID: 23406670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.