BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 27638939)

  • 1. Role of Metabolism in the Immunobiology of Regulatory T Cells.
    Galgani M; De Rosa V; La Cava A; Matarese G
    J Immunol; 2016 Oct; 197(7):2567-75. PubMed ID: 27638939
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FOXP3+ regulatory T cells: control of FOXP3 expression by pharmacological agents.
    Ohkura N; Hamaguchi M; Sakaguchi S
    Trends Pharmacol Sci; 2011 Mar; 32(3):158-66. PubMed ID: 21237521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional regulation of Foxp3 in regulatory T cells.
    Haiqi H; Yong Z; Yi L
    Immunobiology; 2011 Jun; 216(6):678-85. PubMed ID: 21122941
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analyses of regulatory T cell subsets in patients with hepatocellular carcinoma: a crucial role of CD25(-) FOXP3(-) T cells.
    Kakita N; Kanto T; Itose I; Kuroda S; Inoue M; Matsubara T; Higashitani K; Miyazaki M; Sakakibara M; Hiramatsu N; Takehara T; Kasahara A; Hayashi N
    Int J Cancer; 2012 Dec; 131(11):2573-83. PubMed ID: 22419479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic Choice Tunes Foxp3+ Regulatory T Cell Function.
    Wang X; Cheng H; Shen Y; Li B
    Adv Exp Med Biol; 2021; 1278():81-94. PubMed ID: 33523444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foxp3 is required throughout the life of a regulatory T cell.
    Lopes JE; Soper DM; Ziegler SF
    Sci STKE; 2007 Jul; 2007(393):pe36. PubMed ID: 17609478
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of FoxP3+CD4+CD25hi Tregs in the pathogenesis of myasthenia gravis.
    Zhang Y; Wang HB; Chi LJ; Wang WZ
    Immunol Lett; 2009 Jan; 122(1):52-7. PubMed ID: 19111574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decrease of CD4(+) CD25(+) CD127(low) FoxP3(+) regulatory T cells with impaired suppressive function in untreated ulcerative colitis patients.
    Mohammadnia-Afrouzi M; Zavaran Hosseini A; Khalili A; Abediankenari S; Hosseini V; Maleki I
    Autoimmunity; 2015; 48(8):556-61. PubMed ID: 26333292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis.
    Sugimoto N; Oida T; Hirota K; Nakamura K; Nomura T; Uchiyama T; Sakaguchi S
    Int Immunol; 2006 Aug; 18(8):1197-209. PubMed ID: 16772372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Foxp3 Instability Helps tTregs Distinguish Self and Non-self.
    Zhang Z; Zhou X
    Front Immunol; 2019; 10():2226. PubMed ID: 31608056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foxp3-mediated suppression of CD95L expression confers resistance to activation-induced cell death in regulatory T cells.
    Weiss EM; Schmidt A; Vobis D; Garbi N; Lahl K; Mayer CT; Sparwasser T; Ludwig A; Suri-Payer E; Oberle N; Krammer PH
    J Immunol; 2011 Aug; 187(4):1684-91. PubMed ID: 21746966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Foxp3 is critical for human natural CD4+CD25+ regulatory T cells to suppress alloimmune response.
    Sun L; Wu J; Yi S
    Transpl Immunol; 2012 Mar; 26(2-3):71-80. PubMed ID: 22079196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterisation of Foxp3 splice variants in human CD4+ and CD8+ T cells--identification of Foxp3Δ7 in human regulatory T cells.
    Kaur G; Goodall JC; Jarvis LB; Hill Gaston JS
    Mol Immunol; 2010; 48(1-3):321-32. PubMed ID: 20688398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interplay between mTOR and STAT5 signaling modulates the balance between regulatory and effective T cells.
    Shan J; Feng L; Sun G; Chen P; Zhou Y; Xia M; Li H; Li Y
    Immunobiology; 2015 Apr; 220(4):510-7. PubMed ID: 25468562
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity and Stability in Foxp3+ Regulatory T Cells.
    Min B
    J Interferon Cytokine Res; 2017 Sep; 37(9):386-397. PubMed ID: 28696819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of Foxp3(+) gammadelta T cells in mouse and human.
    Kang N; Tang L; Li X; Wu D; Li W; Chen X; Cui L; Ba D; He W
    Immunol Lett; 2009 Aug; 125(2):105-13. PubMed ID: 19539651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular mechanisms underlying the regulation and functional plasticity of FOXP3(+) regulatory T cells.
    Gao Y; Lin F; Su J; Gao Z; Li Y; Yang J; Deng Z; Liu B; Tsun A; Li B
    Genes Immun; 2012 Jan; 13(1):1-13. PubMed ID: 22048454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD39+Foxp3+ regulatory T Cells suppress pathogenic Th17 cells and are impaired in multiple sclerosis.
    Fletcher JM; Lonergan R; Costelloe L; Kinsella K; Moran B; O'Farrelly C; Tubridy N; Mills KH
    J Immunol; 2009 Dec; 183(11):7602-10. PubMed ID: 19917691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IL-2 contributes to maintaining a balance between CD4+Foxp3+ regulatory T cells and effector CD4+ T cells required for immune control of blood-stage malaria infection.
    Berretta F; St-Pierre J; Piccirillo CA; Stevenson MM
    J Immunol; 2011 Apr; 186(8):4862-71. PubMed ID: 21389253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting CD4+CD25+FoxP3+ regulatory T-cells for the augmentation of cancer immunotherapy.
    Schabowsky RH; Madireddi S; Sharma R; Yolcu ES; Shirwan H
    Curr Opin Investig Drugs; 2007 Dec; 8(12):1002-8. PubMed ID: 18058571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.