These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27639239)

  • 1. Quadratic adaptive algorithm for solving cardiac action potential models.
    Chen MH; Chen PY; Luo CH
    Comput Biol Med; 2016 Oct; 77():261-73. PubMed ID: 27639239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition.
    Quan W; Evans SJ; Hastings HM
    IEEE Trans Biomed Eng; 1998 Mar; 45(3):372-85. PubMed ID: 9509753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uniformization method for solving cardiac electrophysiology models based on the Markov-chain formulation.
    Gomes JM; Alvarenga A; Campos RS; Rocha BM; da Silva AP; dos Santos RW
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):600-8. PubMed ID: 25296402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination of multi-variable quadratic adaptive algorithm and hybrid operator splitting method for stability against acceleration in the Markov model of sodium ion channels in the ventricular cell model.
    Luo CH; Chen XJ; Chen MH
    Math Biosci Eng; 2019 Dec; 17(2):1808-1819. PubMed ID: 32233609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A memory optimization method combined with adaptive time-step method for cardiac cell simulation based on multi-GPU.
    Luo CH; Ye H; Chen X
    Med Biol Eng Comput; 2020 Nov; 58(11):2821-2833. PubMed ID: 32954459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An efficient numerical technique for the solution of the monodomain and bidomain equations.
    Whiteley JP
    IEEE Trans Biomed Eng; 2006 Nov; 53(11):2139-47. PubMed ID: 17073318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation of QRST integral maps with a membrane-based computer heart model employing parallel processing.
    Trudel MC; Dubé B; Potse M; Gulrajani RM; Leon LJ
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1319-29. PubMed ID: 15311816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of "quadratic adaptive algorithm" and "hybrid operator splitting" or uniformization algorithms for stability against acceleration in the Markov model of sodium ion channels in the ventricular cell model.
    Chen XJ; Luo CH; Chen MH; Zhou X
    Med Biol Eng Comput; 2019 Jun; 57(6):1367-1379. PubMed ID: 30798516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Algorithm study on the three-dimensional cardiac tissue based on the model of ventricular action potential].
    Zhang H; Ming L; Jin Y; Li M; Zhang Z; Lin Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):1-5. PubMed ID: 20337013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A time-dependent adaptive remeshing for electrical waves of the heart.
    Belhamadia Y
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):443-52. PubMed ID: 18269979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient computational method for simulation of the two-dimensional electrophysiological waves.
    Belhamadia Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():5922-5. PubMed ID: 19164066
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer controllability experiments on a cardiac action potential model.
    Papadopoulos CV; Capetanaki SM
    Mater Med Pol; 1994; 26(2):75-82. PubMed ID: 7745989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combination of "generalized Trotter operator splitting" and "quadratic adaptive algorithm" method for tradeoff among speedup, stability, and accuracy in the Markov chain model of sodium ion channels in the ventricular cell model.
    Chen XJ; Luo CH; Chen MH
    Med Biol Eng Comput; 2020 Sep; 58(9):2131-2141. PubMed ID: 32676840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Action potential conduction between a ventricular cell model and an isolated ventricular cell.
    Wilders R; Kumar R; Joyner RW; Jongsma HJ; Verheijck EE; Golod D; van Ginneken AC; Goolsby WN
    Biophys J; 1996 Jan; 70(1):281-95. PubMed ID: 8770204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parameter estimation in cardiac ionic models.
    Dokos S; Lovell NH
    Prog Biophys Mol Biol; 2004; 85(2-3):407-31. PubMed ID: 15142755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An advanced algorithm for solving partial differential equation in cardiac conduction.
    Qu Z; Garfinkel A
    IEEE Trans Biomed Eng; 1999 Sep; 46(9):1166-8. PubMed ID: 10493080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient technique for the numerical solution of the bidomain equations.
    Whiteley JP
    Ann Biomed Eng; 2008 Aug; 36(8):1398-408. PubMed ID: 18481180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive multiscale model for simulating cardiac conduction.
    Hand PE; Griffith BE
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14603-8. PubMed ID: 20671202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the performance of an implicit-explicit Runge-Kutta method in models of cardiac electrical activity.
    Spiteri RJ; Dean RC
    IEEE Trans Biomed Eng; 2008 May; 55(5):1488-95. PubMed ID: 18440894
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A gradient model of cardiac pacemaker myocytes.
    Lovell NH; Cloherty SL; Celler BG; Dokos S
    Prog Biophys Mol Biol; 2004; 85(2-3):301-23. PubMed ID: 15142749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.