BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 27639381)

  • 1. Regulation of antibody effector functions through IgG Fc N-glycosylation.
    Quast I; Peschke B; Lünemann JD
    Cell Mol Life Sci; 2017 Mar; 74(5):837-847. PubMed ID: 27639381
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immune recruitment or suppression by glycan engineering of endogenous and therapeutic antibodies.
    Le NP; Bowden TA; Struwe WB; Crispin M
    Biochim Biophys Acta; 2016 Aug; 1860(8):1655-68. PubMed ID: 27105835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Method to Detect the Binding of Hyper-Glycosylated Fragment Crystallizable (Fc) Region of Human IgG1 to Glycan Receptors.
    Blundell P; Pleass R
    Methods Mol Biol; 2019; 1904():417-421. PubMed ID: 30539483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sculpting therapeutic monoclonal antibody N-glycans using endoglycosidases.
    Trastoy B; Du JJ; García-Alija M; Li C; Klontz EH; Wang LX; Sundberg EJ; Guerin ME
    Curr Opin Struct Biol; 2022 Feb; 72():248-259. PubMed ID: 34998123
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel role for the IgG Fc glycan: the anti-inflammatory activity of sialylated IgG Fcs.
    Anthony RM; Ravetch JV
    J Clin Immunol; 2010 May; 30 Suppl 1():S9-14. PubMed ID: 20480216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating IgG effector function by Fc glycan engineering.
    Li T; DiLillo DJ; Bournazos S; Giddens JP; Ravetch JV; Wang LX
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3485-3490. PubMed ID: 28289219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Terminal sugars of Fc glycans influence antibody effector functions of IgGs.
    Raju TS
    Curr Opin Immunol; 2008 Aug; 20(4):471-8. PubMed ID: 18606225
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic control of recombinant monoclonal antibody N-glycosylation in GS-NS0 cells.
    Hills AE; Patel A; Boyd P; James DC
    Biotechnol Bioeng; 2001 Oct; 75(2):239-51. PubMed ID: 11536148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD16a with oligomannose-type
    Subedi GP; Barb AW
    J Biol Chem; 2018 Oct; 293(43):16842-16850. PubMed ID: 30213862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of terminal galactose residues in mannose α1-6 arm of Fc-glycan on the effector functions of therapeutic monoclonal antibodies.
    Aoyama M; Hashii N; Tsukimura W; Osumi K; Harazono A; Tada M; Kiyoshi M; Matsuda A; Ishii-Watabe A
    MAbs; 2019 Jul; 11(5):826-836. PubMed ID: 30990348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms.
    Wada R; Matsui M; Kawasaki N
    MAbs; 2019; 11(2):350-372. PubMed ID: 30466347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosylation of Antigen-Specific Antibodies: Perspectives on Immunoglobulin G Glycosylation in Vaccination and Immunotherapy.
    Bharadwaj P; Ackerman ME
    Exp Suppl; 2021; 112():565-587. PubMed ID: 34687023
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Significant impact of single N-glycan residues on the biological activity of Fc-based antibody-like fragments.
    Jez J; Antes B; Castilho A; Kainer M; Wiederkum S; Grass J; Rüker F; Woisetschläger M; Steinkellner H
    J Biol Chem; 2012 Jul; 287(29):24313-9. PubMed ID: 22589538
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycoengineered Monoclonal Antibodies with Homogeneous Glycan (M3, G0, G2, and A2) Using a Chemoenzymatic Approach Have Different Affinities for FcγRIIIa and Variable Antibody-Dependent Cellular Cytotoxicity Activities.
    Kurogochi M; Mori M; Osumi K; Tojino M; Sugawara S; Takashima S; Hirose Y; Tsukimura W; Mizuno M; Amano J; Matsuda A; Tomita M; Takayanagi A; Shoda S; Shirai T
    PLoS One; 2015; 10(7):e0132848. PubMed ID: 26200113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of recombinant monoclonal antibody effector functions by Fc N-glycan remodeling in vitro.
    Hodoniczky J; Zheng YZ; James DC
    Biotechnol Prog; 2005; 21(6):1644-52. PubMed ID: 16321047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IgG N-glycans.
    Liu S; Liu X
    Adv Clin Chem; 2021; 105():1-47. PubMed ID: 34809825
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IgG Fc N-glycosylation: Alterations in neurologic diseases and potential therapeutic target?
    Kronimus Y; Dodel R; Galuska SP; Neumann S
    J Autoimmun; 2019 Jan; 96():14-23. PubMed ID: 30360925
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Restricted processing of CD16a/Fc γ receptor IIIa
    Patel KR; Roberts JT; Subedi GP; Barb AW
    J Biol Chem; 2018 Mar; 293(10):3477-3489. PubMed ID: 29330305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fc glycan-modulated immunoglobulin G effector functions.
    Quast I; Lünemann JD
    J Clin Immunol; 2014 Jul; 34 Suppl 1():S51-5. PubMed ID: 24760108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallizable Fragment Glycoengineering for Therapeutic Antibodies Development.
    Li W; Zhu Z; Chen W; Feng Y; Dimitrov DS
    Front Immunol; 2017; 8():1554. PubMed ID: 29181010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.