BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 27639450)

  • 1. A novel mouse model for the identification of thioredoxin-1 protein interactions.
    Booze ML; Hansen JM; Vitiello PF
    Free Radic Biol Med; 2016 Oct; 99():533-543. PubMed ID: 27639450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioredoxin-1 redox signaling regulates cell survival in response to hyperoxia.
    Floen MJ; Forred BJ; Bloom EJ; Vitiello PF
    Free Radic Biol Med; 2014 Oct; 75():167-77. PubMed ID: 25106706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioredoxin 1 is inactivated due to oxidation induced by peroxiredoxin under oxidative stress and reactivated by the glutaredoxin system.
    Du Y; Zhang H; Zhang X; Lu J; Holmgren A
    J Biol Chem; 2013 Nov; 288(45):32241-32247. PubMed ID: 24062305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elucidation of thioredoxin target protein networks in mouse.
    Fu C; Wu C; Liu T; Ago T; Zhai P; Sadoshima J; Li H
    Mol Cell Proteomics; 2009 Jul; 8(7):1674-87. PubMed ID: 19416943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of novel nuclear targets of human thioredoxin 1.
    Wu C; Jain MR; Li Q; Oka S; Li W; Kong AN; Nagarajan N; Sadoshima J; Simmons WJ; Li H
    Mol Cell Proteomics; 2014 Dec; 13(12):3507-18. PubMed ID: 25231459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guanylyl cyclase sensitivity to nitric oxide is protected by a thiol oxidation-driven interaction with thioredoxin-1.
    Huang C; Alapa M; Shu P; Nagarajan N; Wu C; Sadoshima J; Kholodovych V; Li H; Beuve A
    J Biol Chem; 2017 Sep; 292(35):14362-14370. PubMed ID: 28659344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations of the thioredoxin system by hyperoxia: implications for alveolar development.
    Tipple TE; Welty SE; Nelin LD; Hansen JM; Rogers LK
    Am J Respir Cell Mol Biol; 2009 Nov; 41(5):612-9. PubMed ID: 19244202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism-based proteomic screening identifies targets of thioredoxin-like proteins.
    Nakao LS; Everley RA; Marino SM; Lo SM; de Souza LE; Gygi SP; Gladyshev VN
    J Biol Chem; 2015 Feb; 290(9):5685-95. PubMed ID: 25561728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro susceptibility of thioredoxins and glutathione to redox modification and aging-related changes in skeletal muscle.
    Dimauro I; Pearson T; Caporossi D; Jackson MJ
    Free Radic Biol Med; 2012 Dec; 53(11):2017-27. PubMed ID: 23022873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thioredoxin redox signaling in the ischemic heart: an insight with transgenic mice overexpressing Trx1.
    Turoczi T; Chang VW; Engelman RM; Maulik N; Ho YS; Das DK
    J Mol Cell Cardiol; 2003 Jun; 35(6):695-704. PubMed ID: 12788387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions.
    Hansen JM; Zhang H; Jones DP
    Free Radic Biol Med; 2006 Jan; 40(1):138-45. PubMed ID: 16337887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disturbed flow enhances inflammatory signaling and atherogenesis by increasing thioredoxin-1 level in endothelial cell nuclei.
    Go YM; Son DJ; Park H; Orr M; Hao L; Takabe W; Kumar S; Kang DW; Kim CW; Jo H; Jones DP
    PLoS One; 2014; 9(9):e108346. PubMed ID: 25265386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thioredoxin-1 maintains mitochondrial function via mechanistic target of rapamycin signalling in the heart.
    Oka SI; Chin A; Park JY; Ikeda S; Mizushima W; Ralda G; Zhai P; Tong M; Byun J; Tang F; Einaga Y; Huang CY; Kashihara T; Zhao M; Nah J; Tian B; Hirabayashi Y; Yodoi J; Sadoshima J
    Cardiovasc Res; 2020 Aug; 116(10):1742-1755. PubMed ID: 31584633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased inflammatory signaling and lethality of influenza H1N1 by nuclear thioredoxin-1.
    Go YM; Kang SM; Roede JR; Orr M; Jones DP
    PLoS One; 2011 Apr; 6(4):e18918. PubMed ID: 21526215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective redox regulation of cytokine receptor signaling by extracellular thioredoxin-1.
    Schwertassek U; Balmer Y; Gutscher M; Weingarten L; Preuss M; Engelhard J; Winkler M; Dick TP
    EMBO J; 2007 Jul; 26(13):3086-97. PubMed ID: 17557078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased nuclear thioredoxin-1 potentiates cadmium-induced cytotoxicity.
    Go YM; Orr M; Jones DP
    Toxicol Sci; 2013 Jan; 131(1):84-94. PubMed ID: 22961094
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thioredoxin-1 maintains mechanistic target of rapamycin (mTOR) function during oxidative stress in cardiomyocytes.
    Oka SI; Hirata T; Suzuki W; Naito D; Chen Y; Chin A; Yaginuma H; Saito T; Nagarajan N; Zhai P; Bhat S; Schesing K; Shao D; Hirabayashi Y; Yodoi J; Sciarretta S; Sadoshima J
    J Biol Chem; 2017 Nov; 292(46):18988-19000. PubMed ID: 28939765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox potential of human thioredoxin 1 and identification of a second dithiol/disulfide motif.
    Watson WH; Pohl J; Montfort WR; Stuchlik O; Reed MS; Powis G; Jones DP
    J Biol Chem; 2003 Aug; 278(35):33408-15. PubMed ID: 12816947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxidation of structural cysteine residues in thioredoxin 1 by aromatic arsenicals enhances cancer cell cytotoxicity caused by the inhibition of thioredoxin reductase 1.
    Zhang X; Lu J; Ren X; Du Y; Zheng Y; Ioannou PV; Holmgren A
    Free Radic Biol Med; 2015 Dec; 89():192-200. PubMed ID: 26169724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase.
    Pader I; Sengupta R; Cebula M; Xu J; Lundberg JO; Holmgren A; Johansson K; Arnér ES
    Proc Natl Acad Sci U S A; 2014 May; 111(19):6964-9. PubMed ID: 24778250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.