These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 27639719)

  • 1. Model-based reinforcement learning with dimension reduction.
    Tangkaratt V; Morimoto J; Sugiyama M
    Neural Netw; 2016 Dec; 84():1-16. PubMed ID: 27639719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based policy gradients with parameter-based exploration by least-squares conditional density estimation.
    Tangkaratt V; Mori S; Zhao T; Morimoto J; Sugiyama M
    Neural Netw; 2014 Sep; 57():128-40. PubMed ID: 24995917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reward-weighted regression with sample reuse for direct policy search in reinforcement learning.
    Hachiya H; Peters J; Sugiyama M
    Neural Comput; 2011 Nov; 23(11):2798-832. PubMed ID: 21851281
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient exploration through active learning for value function approximation in reinforcement learning.
    Akiyama T; Hachiya H; Sugiyama M
    Neural Netw; 2010 Jun; 23(5):639-48. PubMed ID: 20080026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A reinforcement learning algorithm acquires demonstration from the training agent by dividing the task space.
    Zu L; He X; Yang J; Liu L; Wang W
    Neural Netw; 2023 Jul; 164():419-427. PubMed ID: 37187108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conditional density estimation with dimensionality reduction via squared-loss conditional entropy minimization.
    Tangkaratt V; Xie N; Sugiyama M
    Neural Comput; 2015 Jan; 27(1):228-54. PubMed ID: 25380340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kernel-based least squares policy iteration for reinforcement learning.
    Xu X; Hu D; Lu X
    IEEE Trans Neural Netw; 2007 Jul; 18(4):973-92. PubMed ID: 17668655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 9. State representation learning for control: An overview.
    Lesort T; Díaz-Rodríguez N; Goudou JI; Filliat D
    Neural Netw; 2018 Dec; 108():379-392. PubMed ID: 30268059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Derivatives of logarithmic stationary distributions for policy gradient reinforcement learning.
    Morimura T; Uchibe E; Yoshimoto J; Peters J; Doya K
    Neural Comput; 2010 Feb; 22(2):342-76. PubMed ID: 19842990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human-level control through deep reinforcement learning.
    Mnih V; Kavukcuoglu K; Silver D; Rusu AA; Veness J; Bellemare MG; Graves A; Riedmiller M; Fidjeland AK; Ostrovski G; Petersen S; Beattie C; Sadik A; Antonoglou I; King H; Kumaran D; Wierstra D; Legg S; Hassabis D
    Nature; 2015 Feb; 518(7540):529-33. PubMed ID: 25719670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning.
    Feng Y; Zhang H; Hao W; Chen G
    Comput Intell Neurosci; 2017; 2017():7643065. PubMed ID: 28894463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reinforcement learning of motor skills with policy gradients.
    Peters J; Schaal S
    Neural Netw; 2008 May; 21(4):682-97. PubMed ID: 18482830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reinforcement learning solution for HJB equation arising in constrained optimal control problem.
    Luo B; Wu HN; Huang T; Liu D
    Neural Netw; 2015 Nov; 71():150-8. PubMed ID: 26356598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reinforcement Learning for Improving Agent Design.
    Ha D
    Artif Life; 2019; 25(4):352-365. PubMed ID: 31697584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human locomotion with reinforcement learning using bioinspired reward reshaping strategies.
    Nowakowski K; Carvalho P; Six JB; Maillet Y; Nguyen AT; Seghiri I; M'Pemba L; Marcille T; Ngo ST; Dao TT
    Med Biol Eng Comput; 2021 Jan; 59(1):243-256. PubMed ID: 33417125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forward and inverse reinforcement learning sharing network weights and hyperparameters.
    Uchibe E; Doya K
    Neural Netw; 2021 Dec; 144():138-153. PubMed ID: 34492548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Online learning of shaping rewards in reinforcement learning.
    Grześ M; Kudenko D
    Neural Netw; 2010 May; 23(4):541-50. PubMed ID: 20116208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Autonomous reinforcement learning with experience replay.
    Wawrzyński P; Tanwani AK
    Neural Netw; 2013 May; 41():156-67. PubMed ID: 23237972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.