These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 27639782)

  • 1. The grain storage of wet-deposited caesium and strontium by spring wheat - A modelling study based on a field experiment.
    Gärdenäs AI; Berglund SL; Bengtsson SB; Rosén K
    Sci Total Environ; 2017 Jan; 574():1313-1325. PubMed ID: 27639782
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interception and retention of wet-deposited radiocaesium and radiostrontium on a ley mixture of grass and clover.
    Bengtsson SB; Gärdenäs AI; Eriksson J; Vinichuk M; Rosén K
    Sci Total Environ; 2014 Nov; 497-498():412-419. PubMed ID: 25146910
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accumulation of wet-deposited radiocaesium and radiostrontium by spring oilseed rape (Brássica napus L.) and spring wheat (Tríticum aestívum L.).
    Bengtsson SB; Eriksson J; Gärdenäs AI; Vinichuk M; Rosén K
    Environ Pollut; 2013 Nov; 182():335-42. PubMed ID: 23973885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interception, retention and translocation under greenhouse conditions of radiocaesium and radiostrontium from a simulated accidental source.
    Vandecasteel CM; Baker S; Förstel H; Muzinsky M; Millan R; Madoz-Escande C; Tormos J; Sauras T; Schulte E; Colle C
    Sci Total Environ; 2001 Oct; 278(1-3):199-214. PubMed ID: 11669268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the accumulation of (137)Cs and (90)Sr by six spring wheat varieties.
    Putyatin YV; Seraya TM; Petrykevich OM; Howard BJ
    Radiat Environ Biophys; 2006 Mar; 44(4):289-98. PubMed ID: 16447064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameters for modelling the interception and retention of deposits from atmosphere by grain and leafy vegetables.
    Simmonds JR; Linsley GS
    Health Phys; 1982 Nov; 43(5):679-91. PubMed ID: 7152930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Weather-dependent change of cesium, strontium, barium and tellurium contamination deposited as aerosols on various cultures.
    Madoz-Escande C; Santucci P
    J Environ Radioact; 2005; 84(3):417-39. PubMed ID: 15979215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foliar transfer into the biosphere: review of translocation factors to cereal grains.
    Colle C; Madoz-Escande C; Leclerc E
    J Environ Radioact; 2009 Sep; 100(9):683-9. PubMed ID: 19019504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of radionuclide and rainfall characteristics on field loss parameters of grass.
    Garcia-Sanchez L; Madoz-Escande C; Gonze MA
    J Environ Radioact; 2009 Oct; 100(10):847-53. PubMed ID: 19596497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root uptake of radionuclides following their acute soil depositions during the growth of selected food crops.
    Choi YH; Lim KM; Jun I; Park DW; Keum DK; Lee CW
    J Environ Radioact; 2009 Sep; 100(9):746-51. PubMed ID: 19188006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of rainfall characteristics on elimination of aerosols of cesium, strontium, barium and tellurium deposited on grassland.
    Madoz-Escande C; Garcia-Sanchez L; Bonhomme T; Morello M
    J Environ Radioact; 2005; 84(1):1-20. PubMed ID: 15950331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interception of radionuclides by planophile crops: A simple semi-empirical modelling approach in case of nuclear accident fallout.
    Cristina A; Samson R; Horemans N; Van Hees M; Wannijn J; Bruggeman M; Sweeck L
    Environ Pollut; 2020 Nov; 266(Pt 3):115308. PubMed ID: 32835917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ageing impact on the transfer factor of
    Al Attar L; Al-Oudat M; Safia B; Abdul Ghani B
    J Environ Radioact; 2016 Nov; 164():19-25. PubMed ID: 27392140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caesium-137 and strontium-90 temporal series in the Tagus River: experimental results and a modelling study.
    Miró C; Baeza A; Madruga MJ; Periañez R
    J Environ Radioact; 2012 Nov; 113():21-31. PubMed ID: 22613729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intra-cultivar variability of the soil-to-grain transfer of fallout 137Cs and 90Sr for winter wheat.
    Schimmack W; Gerstmann U; Schultz W; Sommer M; Tschöpp V; Zimmermann G
    J Environ Radioact; 2007; 94(1):16-30. PubMed ID: 17276560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radionuclides in fruit systems: model prediction-experimental data intercomparison study.
    Ould-Dada Z; Carini F; Eged K; Kis Z; Linkov I; Mitchell NG; Mourlon C; Robles B; Sweeck L; Venter A
    Sci Total Environ; 2006 Aug; 366(2-3):514-24. PubMed ID: 16413598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cesium-134 and strontium-85 in strawberry plants following wet aerial deposition.
    Carini F; Brambilla M; Mitchell N; Ould-Dada Z
    J Environ Qual; 2003; 32(6):2254-64. PubMed ID: 14674549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting the radionuclide fraction transferred to consumption through grain foods.
    Mascanzoni D
    Health Phys; 1989 Oct; 57(4):601-5. PubMed ID: 2793476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chernobyl radionuclide distribution and migration.
    Izrael YA
    Health Phys; 2007 Nov; 93(5):410-7. PubMed ID: 18049217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution of
    Ramadan AB; Diab HM; Monged MHE
    J Environ Radioact; 2021 Sep; 235-236():106648. PubMed ID: 34004546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.