BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 27640175)

  • 1. Design of thermal neutron beam based on an electron linear accelerator for BNCT.
    Zolfaghari M; Sedaghatizadeh M
    Appl Radiat Isot; 2016 Dec; 118():149-153. PubMed ID: 27640175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design and simulation of a neutron source based on an electron linear accelerator for BNCT of skin melanoma.
    Pazirandeh A; Torkamani A; Taheri A
    Appl Radiat Isot; 2011 May; 69(5):749-55. PubMed ID: 21334211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An accelerator-based epithermal neutron beam design for BNCT and dosimetric evaluation using a voxel head phantom.
    Lee DJ; Han CY; Park SH; Kim JK
    Radiat Prot Dosimetry; 2004; 110(1-4):655-60. PubMed ID: 15353726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. (9)Be(d,n)(10)B-based neutron sources for BNCT.
    Capoulat ME; Herrera MS; Minsky DM; González SJ; Kreiner AJ
    Appl Radiat Isot; 2014 Jun; 88():190-4. PubMed ID: 24332880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of photon converter and photoneutron target for High power electron accelerator based BNCT.
    Rahmani F; Seifi S; Anbaran HT; Ghasemi F
    Appl Radiat Isot; 2015 Dec; 106():45-8. PubMed ID: 26278347
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-power electron beam tests of a liquid-lithium target and characterization study of (7)Li(p,n) near-threshold neutrons for accelerator-based boron neutron capture therapy.
    Halfon S; Paul M; Arenshtam A; Berkovits D; Cohen D; Eliyahu I; Kijel D; Mardor I; Silverman I
    Appl Radiat Isot; 2014 Jun; 88():238-42. PubMed ID: 24387907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monte Carlo simulation-based design for an electron-linear-accelerator-driven subcritical neutron multiplier for boron neutron capture therapy.
    Hiraga F
    Appl Radiat Isot; 2018 Oct; 140():121-125. PubMed ID: 30015040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The BSA modeling for the accelerator-based BNCT facility at INFN LNL for treating shallow skin melanoma.
    Ceballos C; Esposito J
    Appl Radiat Isot; 2009 Jul; 67(7-8 Suppl):S274-7. PubMed ID: 19376724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A feasibility study of the Tehran research reactor as a neutron source for BNCT.
    Kasesaz Y; Khalafi H; Rahmani F; Ezati A; Keyvani M; Hossnirokh A; Shamami MA; Monshizadeh M
    Appl Radiat Isot; 2014 Aug; 90():132-7. PubMed ID: 24742535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and optimization of a beam shaping assembly for BNCT based on D-T neutron generator and dose evaluation using a simulated head phantom.
    Rasouli FS; Masoudi SF
    Appl Radiat Isot; 2012 Dec; 70(12):2755-62. PubMed ID: 23041781
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measurements of the thermal neutron flux for an accelerator-based photoneutron source.
    Taheri A; Pazirandeh A
    Australas Phys Eng Sci Med; 2016 Dec; 39(4):857-862. PubMed ID: 27573907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Beam shaping assembly optimization for (7)Li(p,n)(7)Be accelerator based BNCT.
    Minsky DM; Kreiner AJ
    Appl Radiat Isot; 2014 Jun; 88():233-7. PubMed ID: 24345525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The new hybrid thermal neutron facility at TAPIRO reactor for BNCT radiobiological experiments.
    Esposito J; Rosi G; Agosteo S
    Radiat Prot Dosimetry; 2007; 126(1-4):69-73. PubMed ID: 17504745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A
    Capoulat ME; Kreiner AJ
    Phys Med; 2017 Jan; 33():106-113. PubMed ID: 28049613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Are high energy proton beams ideal for AB-BNCT? A brief discussion from the viewpoint of fast neutron contamination control.
    Lee PY; Liu YH; Jiang SH
    Appl Radiat Isot; 2014 Jun; 88():206-10. PubMed ID: 24721900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the characteristics of the neutron beam of a linac-based neutron source for boron neutron capture therapy.
    Kumada H; Takada K; Tanaka S; Matsumoto Y; Naito F; Kurihara T; Sugimura T; Sato M; Matsumura A; Sakurai H; Sakae T
    Appl Radiat Isot; 2020 Nov; 165():109246. PubMed ID: 32692654
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimum design of a moderator system based on dose calculation for an accelerator driven Boron Neutron Capture Therapy.
    Inoue R; Hiraga F; Kiyanagi Y
    Appl Radiat Isot; 2014 Jun; 88():225-8. PubMed ID: 24440538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerator-based BNCT.
    Kreiner AJ; Baldo M; Bergueiro JR; Cartelli D; Castell W; Thatar Vento V; Gomez Asoia J; Mercuri D; Padulo J; Suarez Sandin JC; Erhardt J; Kesque JM; Valda AA; Debray ME; Somacal HR; Igarzabal M; Minsky DM; Herrera MS; Capoulat ME; Gonzalez SJ; del Grosso MF; Gagetti L; Suarez Anzorena M; Gun M; Carranza O
    Appl Radiat Isot; 2014 Jun; 88():185-9. PubMed ID: 24365468
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Neutron Sources and 10B Concentration on Boron Neutron Capture Therapy for Shallow and Deeper Non-small Cell Lung Cancer.
    Yu H; Tang X; Shu D; Liu Y; Geng C; Gong C; Hang S; Chen D
    Health Phys; 2017 Mar; 112(3):258-265. PubMed ID: 28121726
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A design study for an accelerator-based epithermal neutron beam for BNCT.
    Allen DA; Beynon TD
    Phys Med Biol; 1995 May; 40(5):807-21. PubMed ID: 7652009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.