BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27640326)

  • 1. Glypican4 modulates lateral line collective cell migration non cell-autonomously.
    Venero Galanternik M; Lush ME; Piotrowski T
    Dev Biol; 2016 Nov; 419(2):321-335. PubMed ID: 27640326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cxcl12a induces
    Neelathi UM; Dalle Nogare D; Chitnis AB
    Development; 2018 Jul; 145(14):. PubMed ID: 29945870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling factors that regulate cell cooperativity in the zebrafish posterior lateral line primordium.
    Zinn-Björkman L; Adler FR
    J Theor Biol; 2018 May; 444():93-99. PubMed ID: 29470991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulf1 modulates BMP signaling and is required for somite morphogenesis and development of the horizontal myoseptum.
    Meyers JR; Planamento J; Ebrom P; Krulewitz N; Wade E; Pownall ME
    Dev Biol; 2013 Jun; 378(2):107-21. PubMed ID: 23583585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.
    Dalle Nogare D; Chitnis AB
    Semin Cell Dev Biol; 2020 Apr; 100():186-198. PubMed ID: 31901312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glypican4 promotes cardiac specification and differentiation by attenuating canonical Wnt and Bmp signaling.
    Strate I; Tessadori F; Bakkers J
    Development; 2015 May; 142(10):1767-76. PubMed ID: 25968312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wnt/β-catenin dependent cell proliferation underlies segmented lateral line morphogenesis.
    Aman A; Nguyen M; Piotrowski T
    Dev Biol; 2011 Jan; 349(2):470-82. PubMed ID: 20974120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lef1 regulates Dusp6 to influence neuromast formation and spacing in the zebrafish posterior lateral line primordium.
    Matsuda M; Nogare DD; Somers K; Martin K; Wang C; Chitnis AB
    Development; 2013 Jun; 140(11):2387-97. PubMed ID: 23637337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparan Sulfate Proteoglycans Regulate Fgf Signaling and Cell Polarity during Collective Cell Migration.
    Venero Galanternik M; Kramer KL; Piotrowski T
    Cell Rep; 2015 Jan; 10(3):414-428. PubMed ID: 25600875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin.
    Dalle Nogare DE; Natesh N; Vishwasrao HD; Shroff H; Chitnis AB
    Elife; 2020 Nov; 9():. PubMed ID: 33237853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship between surrounding tissue morphology and directional collective migration of the posterior lateral line primordium in zebrafish.
    Karaiwa A; Yamada S; Yamamoto H; Wakasa M; Ishijima H; Akiyama R; Hosokawa Y; Bessho Y; Matsui T
    Genes Cells; 2020 Aug; 25(8):582-592. PubMed ID: 32516841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium.
    Dalle Nogare D; Somers K; Rao S; Matsuda M; Reichman-Fried M; Raz E; Chitnis AB
    Development; 2014 Aug; 141(16):3188-96. PubMed ID: 25063456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lef1 is required for progenitor cell identity in the zebrafish lateral line primordium.
    McGraw HF; Drerup CM; Culbertson MD; Linbo T; Raible DW; Nechiporuk AV
    Development; 2011 Sep; 138(18):3921-30. PubMed ID: 21862556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Itch is required for lateral line development in zebrafish.
    Angers A; Drapeau P
    PLoS One; 2014; 9(11):e111799. PubMed ID: 25369329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shroom3 is required downstream of FGF signalling to mediate proneuromast assembly in zebrafish.
    Ernst S; Liu K; Agarwala S; Moratscheck N; Avci ME; Dalle Nogare D; Chitnis AB; Ronneberger O; Lecaudey V
    Development; 2012 Dec; 139(24):4571-81. PubMed ID: 23136387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling pathways regulating zebrafish lateral line development.
    Ma EY; Raible DW
    Curr Biol; 2009 May; 19(9):R381-6. PubMed ID: 19439264
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction-diffusion finite element model of lateral line primordium migration to explore cell leadership.
    Allena R; Maini PK
    Bull Math Biol; 2014 Dec; 76(12):3028-50. PubMed ID: 25421149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A role of glypican4 and wnt5b in chondrocyte stacking underlying craniofacial cartilage morphogenesis.
    Sisson BE; Dale RM; Mui SR; Topczewska JM; Topczewski J
    Mech Dev; 2015 Nov; 138 Pt 3():279-90. PubMed ID: 26459057
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of canonical Wnt/β-catenin signaling stimulates proliferation in neuromasts in the zebrafish posterior lateral line.
    Head JR; Gacioch L; Pennisi M; Meyers JR
    Dev Dyn; 2013 Jul; 242(7):832-46. PubMed ID: 23606225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A framework for understanding morphogenesis and migration of the zebrafish posterior Lateral Line primordium.
    Dalle Nogare D; Chitnis AB
    Mech Dev; 2017 Dec; 148():69-78. PubMed ID: 28460893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.