BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27641547)

  • 1. Embryonically inspired scaffolds regulate tenogenically differentiating cells.
    Marturano JE; Schiele NR; Schiller ZA; Galassi TV; Stoppato M; Kuo CK
    J Biomech; 2016 Oct; 49(14):3281-3288. PubMed ID: 27641547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Actin cytoskeleton contributes to the elastic modulus of embryonic tendon during early development.
    Schiele NR; von Flotow F; Tochka ZL; Hockaday LA; Marturano JE; Thibodeau JJ; Kuo CK
    J Orthop Res; 2015 Jun; 33(6):874-81. PubMed ID: 25721681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative analysis of mesenchymal stem cell and embryonic tendon progenitor cell response to embryonic tendon biochemical and mechanical factors.
    Brown JP; Galassi TV; Stoppato M; Schiele NR; Kuo CK
    Stem Cell Res Ther; 2015 May; 6(1):89. PubMed ID: 25956970
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of mechanical and biochemical properties of developing embryonic tendon.
    Marturano JE; Arena JD; Schiller ZA; Georgakoudi I; Kuo CK
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6370-5. PubMed ID: 23576745
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development.
    Okech W; Kuo CK
    Adv Exp Med Biol; 2016; 920():63-77. PubMed ID: 27535249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of individual alginate-TCP scaffolds for bone tissue engineering by means of powder printing.
    Castilho M; Rodrigues J; Pires I; Gouveia B; Pereira M; Moseke C; Groll J; Ewald A; Vorndran E
    Biofabrication; 2015 Jan; 7(1):015004. PubMed ID: 25562119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.
    Xu Y; Dong S; Zhou Q; Mo X; Song L; Hou T; Wu J; Li S; Li Y; Li P; Gan Y; Xu J
    Biomaterials; 2014 Mar; 35(9):2760-72. PubMed ID: 24411676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Informing tendon tissue engineering with embryonic development.
    Glass ZA; Schiele NR; Kuo CK
    J Biomech; 2014 Jun; 47(9):1964-8. PubMed ID: 24484642
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lysyl oxidase-mediated collagen crosslinks may be assessed as markers of functional properties of tendon tissue formation.
    Marturano JE; Xylas JF; Sridharan GV; Georgakoudi I; Kuo CK
    Acta Biomater; 2014 Mar; 10(3):1370-9. PubMed ID: 24316363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A poly(lactic-co-glycolic acid) knitted scaffold for tendon tissue engineering: an in vitro and in vivo study.
    Vaquette C; Slimani S; Kahn CJ; Tran N; Rahouadj R; Wang X
    J Biomater Sci Polym Ed; 2010; 21(13):1737-60. PubMed ID: 20557686
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic mechanical and soluble cues regulate tendon progenitor cell gene expression as a function of developmental stage and anatomical origin.
    Brown JP; Finley VG; Kuo CK
    J Biomech; 2014 Jan; 47(1):214-22. PubMed ID: 24231248
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic Shape-Memory Alginate Scaffolds Functionalized with Either Type I or Type II Collagen for Cartilage Tissue Engineering.
    Almeida HV; Sathy BN; Dudurych I; Buckley CT; O'Brien FJ; Kelly DJ
    Tissue Eng Part A; 2017 Jan; 23(1-2):55-68. PubMed ID: 27712409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of mechanical properties of alginate-based substrates on the performance of Schwann cells in culture.
    Ning L; Xu Y; Chen X; Schreyer DJ
    J Biomater Sci Polym Ed; 2016 Jun; 27(9):898-915. PubMed ID: 27012482
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation.
    Rehmann MS; Luna JI; Maverakis E; Kloxin AM
    J Biomed Mater Res A; 2016 May; 104(5):1162-74. PubMed ID: 26748903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioactive TGF-β1/HA alginate-based scaffolds for osteochondral tissue repair: design, realization and multilevel characterization.
    Coluccino L; Stagnaro P; Vassalli M; Scaglione S
    J Appl Biomater Funct Mater; 2016 Apr; 14(1):e42-52. PubMed ID: 26743836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scleraxis Is Essential for Tendon Differentiation by Equine Embryonic Stem Cells and in Equine Fetal Tenocytes.
    Bavin EP; Atkinson F; Barsby T; Guest DJ
    Stem Cells Dev; 2017 Mar; 26(6):441-450. PubMed ID: 27899062
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dielectrophoretic Characterization of Tenogenically Differentiating Mesenchymal Stem Cells.
    Giduthuri AT; Theodossiou SK; Schiele NR; Srivastava SK
    Biosensors (Basel); 2021 Feb; 11(2):. PubMed ID: 33669223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical Microenvironment-Based Inducible Scaffold for Stem Cell Differentiation and Tendon Regeneration.
    Zhang H; Liu MF; Liu RC; Shen WL; Yin Z; Chen X
    Tissue Eng Part B Rev; 2018 Dec; 24(6):443-453. PubMed ID: 29724151
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An experimental model for studying the biomechanics of embryonic tendon: Evidence that the development of mechanical properties depends on the actinomyosin machinery.
    Kalson NS; Holmes DF; Kapacee Z; Otermin I; Lu Y; Ennos RA; Canty-Laird EG; Kadler KE
    Matrix Biol; 2010 Oct; 29(8):678-89. PubMed ID: 20736063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ gelation for cell immobilization and culture in alginate foam scaffolds.
    Andersen T; Markussen C; Dornish M; Heier-Baardson H; Melvik JE; Alsberg E; Christensen BE
    Tissue Eng Part A; 2014 Feb; 20(3-4):600-10. PubMed ID: 24125496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.