These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 27641720)
1. Unexpected retention and efficiency behaviors in supercritical fluid chromatography: A thermodynamic interpretation. Gritti F J Chromatogr A; 2016 Oct; 1468():209-216. PubMed ID: 27641720 [TBL] [Abstract][Full Text] [Related]
2. Maximizing performance in supercritical fluid chromatography using low-density mobile phases. Gritti F; Fogwill M; Gilar M; Jarrell JA J Chromatogr A; 2016 Oct; 1468():217-227. PubMed ID: 27658377 [TBL] [Abstract][Full Text] [Related]
3. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part I: Optimization of mobile phase composition. Lemasson E; Bertin S; Hennig P; Boiteux H; Lesellier E; West C J Chromatogr A; 2015 Aug; 1408():217-26. PubMed ID: 26195034 [TBL] [Abstract][Full Text] [Related]
4. Limit of the speed-resolution properties in adiabatic supercritical fluid chromatography. Gritti F; Guiochon G J Chromatogr A; 2013 Jun; 1295():114-27. PubMed ID: 23672980 [TBL] [Abstract][Full Text] [Related]
5. Understanding and diminishing the extra-column band broadening effects in supercritical fluid chromatography. De Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2015 Jul; 1403():132-7. PubMed ID: 26054561 [TBL] [Abstract][Full Text] [Related]
6. [Effect of sample solvents on retention in packed column supercritical fluid chromatography]. Lu F; Liu LL; Wu YT Se Pu; 2000 Mar; 18(2):155-7. PubMed ID: 12541595 [TBL] [Abstract][Full Text] [Related]
7. Systematic investigations of peak deformations due to co-solvent adsorption in preparative supercritical fluid chromatography. Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2017 May; 1496():141-149. PubMed ID: 28366564 [TBL] [Abstract][Full Text] [Related]
8. The modeling of overloaded elution band profiles in supercritical fluid chromatography. Vajda P; Guiochon G J Chromatogr A; 2014 Mar; 1333():116-23. PubMed ID: 24529406 [TBL] [Abstract][Full Text] [Related]
9. Efficiency in supercritical fluid chromatography with different superficially porous and fully porous particles ODS bonded phases. Lesellier E J Chromatogr A; 2012 Mar; 1228():89-98. PubMed ID: 22192562 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a 2.6 μm Kinetex porous shell hydrophilic interaction liquid chromatography column in supercritical fluid chromatography with a comparison to 3 μm totally porous silica. Berger TA J Chromatogr A; 2011 Jul; 1218(28):4559-68. PubMed ID: 21628062 [TBL] [Abstract][Full Text] [Related]
11. Exploring the speed-resolution limits of supercritical fluid chromatography at ultra-high pressures. Pauw R; Shoykhet Choikhet K; Desmet G; Broeckhoven K J Chromatogr A; 2014 Dec; 1374():247-253. PubMed ID: 25481350 [TBL] [Abstract][Full Text] [Related]
12. Modeling the competitive adsorption of sample solvent and solute in supercritical fluid chromatography. Rédei C; Felinger A J Chromatogr A; 2019 Oct; 1603():348-354. PubMed ID: 31164229 [TBL] [Abstract][Full Text] [Related]
13. System maps for retention of small neutral compounds on a superficially porous particle column in reversed-phase liquid chromatography. Atapattu SN; Poole CF; Praseuth MB J Chromatogr A; 2016 Oct; 1468():250-256. PubMed ID: 27678404 [TBL] [Abstract][Full Text] [Related]
14. Development of an achiral supercritical fluid chromatography method with ultraviolet absorbance and mass spectrometric detection for impurity profiling of drug candidates. Part II. Selection of an orthogonal set of stationary phases. Lemasson E; Bertin S; Hennig P; Boiteux H; Lesellier E; West C J Chromatogr A; 2015 Aug; 1408():227-35. PubMed ID: 26195036 [TBL] [Abstract][Full Text] [Related]
15. Effect of density on kinetic performance in supercritical fluid chromatography with methanol modified carbon dioxide. Berger TA J Chromatogr A; 2018 Aug; 1564():188-198. PubMed ID: 29929869 [TBL] [Abstract][Full Text] [Related]
16. Modelling of retention in analytical supercritical fluid chromatography for CO2-Methanol mobile phase. Leśko M; Poe DP; Kaczmarski K J Chromatogr A; 2013 Aug; 1305():285-92. PubMed ID: 23891374 [TBL] [Abstract][Full Text] [Related]
18. Characterization of stationary phases based on polysiloxanes thermally immobilized onto silica and metalized silica using supercritical fluid chromatography with the solvation parameter model. da Silva CG; Collins CH; Lesellier E; West C J Chromatogr A; 2013 Nov; 1315():176-87. PubMed ID: 24079548 [TBL] [Abstract][Full Text] [Related]
19. Effect of the thermal environment on the efficiency of packed columns in supercritical fluid chromatography. Zauner J; Lusk R; Koski S; Poe DP J Chromatogr A; 2012 Nov; 1266():149-57. PubMed ID: 23107122 [TBL] [Abstract][Full Text] [Related]
20. Speed-resolution advantage of turbulent supercritical fluid chromatography in open tubular columns: II - Theoretical and experimental evidences. Gritti F; Fogwill M J Chromatogr A; 2017 Jun; 1501():142-150. PubMed ID: 28434714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]