These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 27641720)
21. Evaluation of temperature and pressure effects on retention in supercritical fluid chromatography on polar stationary phases. Ovchinnikov DV; Pokrovskiy OI; Kosyakov DS; Bogolitsyn KG; Ul'yanovskii NV; Falev DI J Chromatogr A; 2020 Jan; 1610():460600. PubMed ID: 31610921 [TBL] [Abstract][Full Text] [Related]
22. Comparison of the most recent chromatographic approaches applied for fast and high resolution separations: Theory and practice. Fekete S; Veuthey JL; Guillarme D J Chromatogr A; 2015 Aug; 1408():1-14. PubMed ID: 26187764 [TBL] [Abstract][Full Text] [Related]
23. Efficiency of supercritical fluid chromatography columns in different thermal environments. Kaczmarski K; Poe DP; Tarafder A; Guiochon G J Chromatogr A; 2013 May; 1291():155-73. PubMed ID: 23598158 [TBL] [Abstract][Full Text] [Related]
24. Ideal versus real automated twin column recycling chromatography process. Gritti F; Leal M; McDonald T; Gilar M J Chromatogr A; 2017 Jul; 1508():81-94. PubMed ID: 28610798 [TBL] [Abstract][Full Text] [Related]
25. Using subcritical/supercritical fluid chromatography to separate acidic, basic, and neutral compounds over an ionic liquid-functionalized stationary phase. Chou FM; Wang WT; Wei GT J Chromatogr A; 2009 Apr; 1216(16):3594-9. PubMed ID: 19269644 [TBL] [Abstract][Full Text] [Related]
26. Development of a supercritical fluid chromatography high-resolution separation method suitable for pharmaceuticals using cyanopropyl silica. Brunelli C; Zhao Y; Brown MH; Sandra P J Chromatogr A; 2008 Mar; 1185(2):263-72. PubMed ID: 18308326 [TBL] [Abstract][Full Text] [Related]
27. Effect of system variables involved in packed column supercritical fluid chromatography of stavudine taken as model analyte using response surface methodology along with study of thermodynamic parameters. Kaul N; Agrawal H; Paradkar AR; Mahadik KR J Pharm Biomed Anal; 2007 Jan; 43(2):471-80. PubMed ID: 16935453 [TBL] [Abstract][Full Text] [Related]
28. Efficiency of the same neat silica column in hydrophilic interaction chromatography and per aqueous liquid chromatography. Gritti F; Dos Santos Pereira A; Sandra P; Guiochon G J Chromatogr A; 2010 Jan; 1217(5):683-8. PubMed ID: 20044093 [TBL] [Abstract][Full Text] [Related]
29. Peak deformations in preparative supercritical fluid chromatography due to co-solvent adsorption. Glenne E; Leek H; Klarqvist M; Samuelsson J; Fornstedt T J Chromatogr A; 2016 Oct; 1468():200-208. PubMed ID: 27641721 [TBL] [Abstract][Full Text] [Related]
30. Efficiency of short, small-diameter columns for reversed-phase liquid chromatography under practical operating conditions. Ma Y; Chassy AW; Miyazaki S; Motokawa M; Morisato K; Uzu H; Ohira M; Furuno M; Nakanishi K; Minakuchi H; Mriziq K; Farkas T; Fiehn O; Tanaka N J Chromatogr A; 2015 Feb; 1383():47-57. PubMed ID: 25648581 [TBL] [Abstract][Full Text] [Related]
31. An attempt to estimate ionic interactions with phenyl and pentafluorophenyl stationary phases in supercritical fluid chromatography. West C; Lemasson E; Khater S; Lesellier E J Chromatogr A; 2015 Sep; 1412():126-38. PubMed ID: 26278356 [TBL] [Abstract][Full Text] [Related]
32. Unravelling the effects of mobile phase additives in supercritical fluid chromatography-Part II: Adsorption on the stationary phase. West C; Lemasson E J Chromatogr A; 2019 May; 1593():135-146. PubMed ID: 30803789 [TBL] [Abstract][Full Text] [Related]
33. Sum of ranking differences to rank stationary phases used in packed column supercritical fluid chromatography. West C; Khalikova MA; Lesellier E; Héberger K J Chromatogr A; 2015 Aug; 1409():241-50. PubMed ID: 26228853 [TBL] [Abstract][Full Text] [Related]
34. Performance of the same column in supercritical fluid chromatography and in liquid chromatography. Lambert N; Felinger A J Chromatogr A; 2015 Aug; 1409():234-40. PubMed ID: 26212802 [TBL] [Abstract][Full Text] [Related]
35. Surface excess isotherms of organic solvent mixtures in a system made of liquid carbon dioxide and a silicagel surface. Vajda P; Guiochon G J Chromatogr A; 2013 Sep; 1308():139-43. PubMed ID: 23953617 [TBL] [Abstract][Full Text] [Related]
36. The effect of column history in supercritical fluid chromatography: Practical implications. Plachká K; Střítecký J; Svec F; Nováková L J Chromatogr A; 2021 Aug; 1651():462272. PubMed ID: 34107402 [TBL] [Abstract][Full Text] [Related]
37. Adsorption behavior of the three species of the biprotic peptide Phe-Ala onto an end-capped C18-bonded organic/inorganic hybrid stationary phase. Gritti F; Guiochon G Anal Chem; 2009 Dec; 81(24):9871-84. PubMed ID: 19928839 [TBL] [Abstract][Full Text] [Related]
38. Extension of the carotenoid test to superficially porous C18 bonded phases, aromatic ligand types and new classical C18 bonded phases. Lesellier E J Chromatogr A; 2012 Nov; 1266():34-42. PubMed ID: 23116802 [TBL] [Abstract][Full Text] [Related]
39. Feasibility of correlating separation of ternary mixtures of neutral analytes via thin layer chromatography with supercritical fluid chromatography in support of green flash separations. Ashraf-Khorassani M; Yan Q; Akin A; Riley F; Aurigemma C; Taylor LT J Chromatogr A; 2015 Oct; 1418():210-217. PubMed ID: 26422305 [TBL] [Abstract][Full Text] [Related]
40. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns. Gritti F; Guiochon G J Chromatogr A; 2012 May; 1238():77-90. PubMed ID: 22503619 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]