These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27641752)

  • 1. iRSpot-DACC: a computational predictor for recombination hot/cold spots identification based on dinucleotide-based auto-cross covariance.
    Liu B; Liu Y; Jin X; Wang X; Liu B
    Sci Rep; 2016 Sep; 6():33483. PubMed ID: 27641752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recombination Hotspot/Coldspot Identification Combining Three Different Pseudocomponents via an Ensemble Learning Approach.
    Liu B; Liu Y; Huang D
    Biomed Res Int; 2016; 2016():8527435. PubMed ID: 27648451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iRSpot-PseDNC: identify recombination spots with pseudo dinucleotide composition.
    Chen W; Feng PM; Lin H; Chou KC
    Nucleic Acids Res; 2013 Apr; 41(6):e68. PubMed ID: 23303794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of Recombination Spots Using Novel Hybrid Feature Extraction Method via Deep Learning Approach.
    Khan F; Khan M; Iqbal N; Khan S; Muhammad Khan D; Khan A; Wei DQ
    Front Genet; 2020; 11():539227. PubMed ID: 33093842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iRSpot-DTS: Predict recombination spots by incorporating the dinucleotide-based spare-cross covariance information into Chou's pseudo components.
    Zhang S; Yang K; Lei Y; Song K
    Genomics; 2019 Dec; 111(6):1760-1770. PubMed ID: 30529702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iRSpot-TNCPseAAC: identify recombination spots with trinucleotide composition and pseudo amino acid components.
    Qiu WR; Xiao X; Chou KC
    Int J Mol Sci; 2014 Jan; 15(2):1746-66. PubMed ID: 24469313
    [TBL] [Abstract][Full Text] [Related]  

  • 7. iRSpot-Pse6NC: Identifying recombination spots in
    Yang H; Qiu WR; Liu G; Guo FB; Chen W; Chou KC; Lin H
    Int J Biol Sci; 2018; 14(8):883-891. PubMed ID: 29989083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iRSpot-PDI: Identification of recombination spots by incorporating dinucleotide property diversity information into Chou's pseudo components.
    Zhang L; Kong L
    Genomics; 2019 May; 111(3):457-464. PubMed ID: 29548799
    [TBL] [Abstract][Full Text] [Related]  

  • 9. iRSpot-EL: identify recombination spots with an ensemble learning approach.
    Liu B; Wang S; Long R; Chou KC
    Bioinformatics; 2017 Jan; 33(1):35-41. PubMed ID: 27531102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Support vector machine for classification of meiotic recombination hotspots and coldspots in Saccharomyces cerevisiae based on codon composition.
    Zhou T; Weng J; Sun X; Lu Z
    BMC Bioinformatics; 2006 Apr; 7():223. PubMed ID: 16640774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RF-DYMHC: detecting the yeast meiotic recombination hotspots and coldspots by random forest model using gapped dinucleotide composition features.
    Jiang P; Wu H; Wei J; Sang F; Sun X; Lu Z
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W47-51. PubMed ID: 17478517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequence-dependent prediction of recombination hotspots in Saccharomyces cerevisiae.
    Liu G; Liu J; Cui X; Cai L
    J Theor Biol; 2012 Jan; 293():49-54. PubMed ID: 22016025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. iRSpot-GAEnsC: identifing recombination spots via ensemble classifier and extending the concept of Chou's PseAAC to formulate DNA samples.
    Kabir M; Hayat M
    Mol Genet Genomics; 2016 Feb; 291(1):285-96. PubMed ID: 26319782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using weighted features to predict recombination hotspots in Saccharomyces cerevisiae.
    Liu G; Xing Y; Cai L
    J Theor Biol; 2015 Oct; 382():15-22. PubMed ID: 26141645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. iRSpot-ADPM: Identify recombination spots by incorporating the associated dinucleotide product model into Chou's pseudo components.
    Zhang L; Kong L
    J Theor Biol; 2018 Mar; 441():1-8. PubMed ID: 29305179
    [TBL] [Abstract][Full Text] [Related]  

  • 16. iRecSpot-EF: Effective sequence based features for recombination hotspot prediction.
    Jani MR; Khan Mozlish MT; Ahmed S; Tahniat NS; Farid DM; Shatabda S
    Comput Biol Med; 2018 Dec; 103():17-23. PubMed ID: 30336361
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Epigenetic Marks and Variation of Sequence-Based Information Along Genomic Regions Are Predictive of Recombination Hot/Cold Spots in
    Liu G; Song S; Zhang Q; Dong B; Sun Y; Liu G; Zhao X
    Front Genet; 2021; 12():705038. PubMed ID: 34267784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iRSpot-SF: Prediction of recombination hotspots by incorporating sequence based features into Chou's Pseudo components.
    Al Maruf MA; Shatabda S
    Genomics; 2019 Jul; 111(4):966-972. PubMed ID: 29935224
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparison and assessment of computational method for identifying recombination hotspots in Saccharomyces cerevisiae.
    Yang H; Yang W; Dao FY; Lv H; Ding H; Chen W; Lin H
    Brief Bioinform; 2020 Sep; 21(5):1568-1580. PubMed ID: 31633777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sequence-based identification of recombination spots using pseudo nucleic acid representation and recursive feature extraction by linear kernel SVM.
    Li L; Yu S; Xiao W; Li Y; Huang L; Zheng X; Zhou S; Yang H
    BMC Bioinformatics; 2014 Nov; 15(1):340. PubMed ID: 25409550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.