These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 27641771)

  • 1. The Deep Origin and Recent Loss of Venom Toxin Genes in Rattlesnakes.
    Dowell NL; Giorgianni MW; Kassner VA; Selegue JE; Sanchez EE; Carroll SB
    Curr Biol; 2016 Sep; 26(18):2434-2445. PubMed ID: 27641771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Snake venomics of the Central American rattlesnake Crotalus simus and the South American Crotalus durissus complex points to neurotoxicity as an adaptive paedomorphic trend along Crotalus dispersal in South America.
    Calvete JJ; Sanz L; Cid P; de la Torre P; Flores-Díaz M; Dos Santos MC; Borges A; Bremo A; Angulo Y; Lomonte B; Alape-Girón A; Gutiérrez JM
    J Proteome Res; 2010 Jan; 9(1):528-44. PubMed ID: 19863078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phenotypic Variation in Mojave Rattlesnake (Crotalus scutulatus) Venom Is Driven by Four Toxin Families.
    Strickland JL; Mason AJ; Rokyta DR; Parkinson CL
    Toxins (Basel); 2018 Mar; 10(4):. PubMed ID: 29570631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics.
    Rokyta DR; Wray KP; Margres MJ
    BMC Genomics; 2013 Jun; 14():394. PubMed ID: 23758969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and functions of crotoxin-like heterodimers and acidic phospholipases A2 from Gloydius intermedius venom: Insights into the origin of neurotoxic-type rattlesnakes.
    Yang ZM; Guo Q; Ma ZR; Chen Y; Wang ZZ; Wang XM; Wang YM; Tsai IH
    J Proteomics; 2015 Jan; 112():210-23. PubMed ID: 25252117
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A phospholipase A2-like pseudogene retaining the highly conserved introns of Mojave toxin and other snake venom group II PLA2s, but having different exons.
    John TR; Smith JJ; Kaiser II
    DNA Cell Biol; 1996 Aug; 15(8):661-8. PubMed ID: 8769568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely Divergent Haplotypes in Two Toxin Gene Complexes Encode Alternative Venom Types within Rattlesnake Species.
    Dowell NL; Giorgianni MW; Griffin S; Kassner VA; Selegue JE; Sanchez EE; Carroll SB
    Curr Biol; 2018 Apr; 28(7):1016-1026.e4. PubMed ID: 29576471
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, characterization and crystallization of a phospholipase A2 myotoxin from the venom of the prairie rattlesnake (Crotalus viridis viridis).
    Ownby CL; Colberg TR; White SP
    Toxicon; 1997 Jan; 35(1):111-24. PubMed ID: 9028014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-throughput venom-gland transcriptome for the Eastern Diamondback Rattlesnake (Crotalus adamanteus) and evidence for pervasive positive selection across toxin classes.
    Rokyta DR; Wray KP; Lemmon AR; Lemmon EM; Caudle SB
    Toxicon; 2011 Apr; 57(5):657-71. PubMed ID: 21255598
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Snake venomics of Crotalus tigris: the minimalist toxin arsenal of the deadliest Nearctic rattlesnake venom. Evolutionary Clues for generating a pan-specific antivenom against crotalid type II venoms [corrected].
    Calvete JJ; Pérez A; Lomonte B; Sánchez EE; Sanz L
    J Proteome Res; 2012 Feb; 11(2):1382-90. PubMed ID: 22181673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Is Hybridization a Source of Adaptive Venom Variation in Rattlesnakes? A Test, Using a Crotalus scutulatus × viridis Hybrid Zone in Southwestern New Mexico.
    Zancolli G; Baker TG; Barlow A; Bradley RK; Calvete JJ; Carter KC; de Jager K; Owens JB; Price JF; Sanz L; Scholes-Higham A; Shier L; Wood L; Wüster CE; Wüster W
    Toxins (Basel); 2016 Jun; 8(6):. PubMed ID: 27322321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rattling the border wall: Pathophysiological implications of functional and proteomic venom variation between Mexican and US subspecies of the desert rattlesnake Crotalus scutulatus.
    Dobson J; Yang DC; Op den Brouw B; Cochran C; Huynh T; Kurrupu S; Sánchez EE; Massey DJ; Baumann K; Jackson TNW; Nouwens A; Josh P; Neri-Castro E; Alagón A; Hodgson WC; Fry BG
    Comp Biochem Physiol C Toxicol Pharmacol; 2018 Feb; 205():62-69. PubMed ID: 29074260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications.
    Sunagar K; Undheim EA; Scheib H; Gren EC; Cochran C; Person CE; Koludarov I; Kelln W; Hayes WK; King GF; Antunes A; Fry BG
    J Proteomics; 2014 Mar; 99():68-83. PubMed ID: 24463169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid evolution by positive selection and gene gain and loss: PLA(2) venom genes in closely related Sistrurus rattlesnakes with divergent diets.
    Gibbs HL; Rossiter W
    J Mol Evol; 2008 Feb; 66(2):151-66. PubMed ID: 18253686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absence of phospholipase A(2) in most Crotalus horridus venom due to translation blockage: comparison with Crotalus horridus atricaudatus venom.
    Wang YM; Parmelee J; Guo YW; Tsai IH
    Toxicon; 2010 Aug; 56(1):93-100. PubMed ID: 20347857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrated Venomics and Venom Gland Transcriptome Analysis of Juvenile and Adult Mexican Rattlesnakes Crotalus simus, C. tzabcan, and C. culminatus Revealed miRNA-modulated Ontogenetic Shifts.
    Durban J; Sanz L; Trevisan-Silva D; Neri-Castro E; Alagón A; Calvete JJ
    J Proteome Res; 2017 Sep; 16(9):3370-3390. PubMed ID: 28731347
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of hybridization on divergent venom phenotypes: Characterization of venom from Crotalus scutulatus scutulatus × Crotalus oreganus helleri hybrids.
    Smith CF; Mackessy SP
    Toxicon; 2016 Sep; 120():110-23. PubMed ID: 27496060
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The origin and diversification of a novel protein family in venomous snakes.
    Giorgianni MW; Dowell NL; Griffin S; Kassner VA; Selegue JE; Carroll SB
    Proc Natl Acad Sci U S A; 2020 May; 117(20):10911-10920. PubMed ID: 32366667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus).
    Rokyta DR; Wray KP; McGivern JJ; Margres MJ
    Toxicon; 2015 May; 98():34-48. PubMed ID: 25727380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Montane Rattlesnakes in México: Venoms of
    Grabowsky ER; Saviola AJ; Alvarado-Díaz J; Mascareñas AQ; Hansen KC; Yates JR; Mackessy SP
    Toxins (Basel); 2023 Jan; 15(1):. PubMed ID: 36668891
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.