These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 27641828)
1. Quantification of the Keto-Hydroperoxide (HOOCH Moshammer K; Jasper AW; Popolan-Vaida DM; Wang Z; Bhavani Shankar VS; Ruwe L; Taatjes CA; Dagaut P; Hansen N J Phys Chem A; 2016 Oct; 120(40):7890-7901. PubMed ID: 27641828 [TBL] [Abstract][Full Text] [Related]
2. Detection and Identification of the Keto-Hydroperoxide (HOOCH2OCHO) and Other Intermediates during Low-Temperature Oxidation of Dimethyl Ether. Moshammer K; Jasper AW; Popolan-Vaida DM; Lucassen A; Diévart P; Selim H; Eskola AJ; Taatjes CA; Leone SR; Sarathy SM; Ju Y; Dagaut P; Kohse-Höinghaus K; Hansen N J Phys Chem A; 2015 Jul; 119(28):7361-74. PubMed ID: 25695304 [TBL] [Abstract][Full Text] [Related]
3. Low-Temperature Oxidation of Ethylene by Ozone in a Jet-Stirred Reactor. Rousso AC; Hansen N; Jasper AW; Ju Y J Phys Chem A; 2018 Nov; 122(43):8674-8685. PubMed ID: 30293425 [TBL] [Abstract][Full Text] [Related]
4. Quantification of Key Peroxy and Hydroperoxide Intermediates in the Low-Temperature Oxidation of Dimethyl Ether. Couch DE; Mulvihill CR; Sivaramakrishnan R; Au K; Taatjes CA; Sheps L J Phys Chem A; 2022 Dec; 126(50):9497-9509. PubMed ID: 36480708 [TBL] [Abstract][Full Text] [Related]
5. Identification of the acetaldehyde oxide Criegee intermediate reaction network in the ozone-assisted low-temperature oxidation of Conrad AR; Hansen N; Jasper AW; Thomason NK; Hidaldo-Rodrigues L; Treshock SP; Popolan-Vaida DM Phys Chem Chem Phys; 2021 Oct; 23(41):23554-23566. PubMed ID: 34651147 [TBL] [Abstract][Full Text] [Related]
6. Isomer-Selective Detection of Keto-Hydroperoxides in the Low-Temperature Oxidation of Tetrahydrofuran. Hansen N; Moshammer K; Jasper AW J Phys Chem A; 2019 Sep; 123(38):8274-8284. PubMed ID: 31483667 [TBL] [Abstract][Full Text] [Related]
7. Composition of reaction intermediates for stoichiometric and fuel-rich dimethyl ether flames: flame-sampling mass spectrometry and modeling studies. Wang J; Chaos M; Yang B; Cool TA; Dryer FL; Kasper T; Hansen N; Osswald P; Kohse-Höinghaus K; Westmoreland PR Phys Chem Chem Phys; 2009 Mar; 11(9):1328-39. PubMed ID: 19224033 [TBL] [Abstract][Full Text] [Related]
8. Identification of the Criegee intermediate reaction network in ethylene ozonolysis: impact on energy conversion strategies and atmospheric chemistry. Rousso AC; Hansen N; Jasper AW; Ju Y Phys Chem Chem Phys; 2019 Apr; 21(14):7341-7357. PubMed ID: 30896721 [TBL] [Abstract][Full Text] [Related]
9. Formate species in the low-temperature oxidation of dimethyl ether. Liu I; Cant NW; Bromly JH; Barnes FJ; Nelson PF; Haynes BS Chemosphere; 2001; 42(5-7):583-9. PubMed ID: 11219683 [TBL] [Abstract][Full Text] [Related]
10. Molecular-Weight Growth in Ozone-Initiated Low-Temperature Oxidation of Methyl Crotonate. He X; Hansen N; Moshammer K J Phys Chem A; 2020 Oct; 124(39):7881-7892. PubMed ID: 32893634 [TBL] [Abstract][Full Text] [Related]
11. Tracking the reaction networks of acetaldehyde oxide and glyoxal oxide Criegee intermediates in the ozone-assisted oxidation reaction of crotonaldehyde. DeCecco AC; Conrad AR; Floyd AM; Jasper AW; Hansen N; Dagaut P; Moody NE; Popolan-Vaida DM Phys Chem Chem Phys; 2024 Aug; 26(34):22319-22336. PubMed ID: 38980126 [TBL] [Abstract][Full Text] [Related]
12. Experimental and Modeling Investigation of the Low-Temperature Oxidation of Dimethyl Ether. Rodriguez A; Frottier O; Herbinet O; Fournet R; Bounaceur R; Fittschen C; Battin-Leclerc F J Phys Chem A; 2015 Jul; 119(28):7905-23. PubMed ID: 25870904 [TBL] [Abstract][Full Text] [Related]
13. Pyrolysis of methyl tert-butyl ether (MTBE). 1. Experimental study with molecular-beam mass spectrometry and tunable synchrotron VUV photoionization. Zhang T; Wang J; Yuan T; Hong X; Zhang L; Qi F J Phys Chem A; 2008 Oct; 112(42):10487-94. PubMed ID: 18823099 [TBL] [Abstract][Full Text] [Related]
14. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame. Lin ZK; Han DL; Li SF; Li YY; Yuan T J Chem Phys; 2009 Apr; 130(15):154306. PubMed ID: 19388745 [TBL] [Abstract][Full Text] [Related]
15. Hydroperoxide Measurements During Low-Temperature Gas-Phase Oxidation of n-Heptane and n-Decane. Rodriguez A; Herbinet O; Meng X; Fittschen C; Wang Z; Xing L; Zhang L; Battin-Leclerc F J Phys Chem A; 2017 Mar; 121(9):1861-1876. PubMed ID: 28190356 [TBL] [Abstract][Full Text] [Related]
16. Study of combustion intermediates in fuel-rich methyl methacrylate flame with tunable synchrotron vacuum ultraviolet photoionization mass spectrometry. Lin Z; Wang T; Han D; Han X; Li S; Li Y; Tian Z Rapid Commun Mass Spectrom; 2009 Jan; 23(1):85-92. PubMed ID: 19051228 [TBL] [Abstract][Full Text] [Related]
17. Combustion intermediates in fuel-rich 1,4-dioxane flame studied by tunable synchrotron vacuum ultraviolet photoionization. Lin Z; Han D; Li S; Li Y; Yuan T J Phys Chem A; 2009 Mar; 113(9):1800-6. PubMed ID: 19203256 [TBL] [Abstract][Full Text] [Related]