These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27642153)

  • 1. In Situ Nanopressing: A General Approach to Robust Nanoparticles-Polymer Surface Structures.
    Zhang X; He J; Jin B
    Sci Rep; 2016 Sep; 6():33494. PubMed ID: 27642153
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer thin films embedded with in situ grown metal nanoparticles.
    Ramesh GV; Porel S; Radhakrishnan TP
    Chem Soc Rev; 2009 Sep; 38(9):2646-56. PubMed ID: 19690744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A versatile route to polymer-reinforced, broadband antireflective and superhydrophobic thin films without high-temperature treatment.
    Ren T; Geng Z; He J; Zhang X; He J
    J Colloid Interface Sci; 2017 Jan; 486():1-7. PubMed ID: 27689720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the SERS Response with Ag-Au Nanoparticle-Embedded Polymer Thin Film Substrates.
    Rao VK; Radhakrishnan TP
    ACS Appl Mater Interfaces; 2015 Jun; 7(23):12767-73. PubMed ID: 26035249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid One-Pot Preparation of Large Freestanding Nanoparticle-Polymer Films.
    Xu Y; Konrad MP; Trotter JL; McCoy CP; Bell SE
    Small; 2017 Jan; 13(2):. PubMed ID: 28060467
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of biomimetic high performance antireflective and antifogging film by spin-coating.
    Zhang L; Lü C; Li Y; Lin Z; Wang Z; Dong H; Wang T; Zhang X; Li X; Zhang J; Yang B
    J Colloid Interface Sci; 2012 May; 374(1):89-95. PubMed ID: 22360984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust antifogging antireflective coatings on polymer substrates by hydrochloric acid vapor treatment.
    Li T; He J; Yao L; Geng Z
    J Colloid Interface Sci; 2015 Apr; 444():67-73. PubMed ID: 25585289
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-assembly and catalytic activity of metal nanoparticles immobilized in polymer membrane prepared via layer-by-layer approach.
    Dhar J; Patil S
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1803-12. PubMed ID: 22401167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wet-Style Superhydrophobic Antifogging Coatings for Optical Sensors.
    Yoon J; Ryu M; Kim H; Ahn GN; Yim SJ; Kim DP; Lee H
    Adv Mater; 2020 Aug; 32(34):e2002710. PubMed ID: 32656789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust yet self-healing antifogging/antibacterial dual-functional composite films by a simple one-pot strategy.
    Wang Y; Yao L; Ren T; He J
    J Colloid Interface Sci; 2019 Mar; 540():107-114. PubMed ID: 30634058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ fabricated polymer-silver nanocomposite thin film as an inexpensive and efficient substrate for surface-enhanced Raman scattering.
    Hariprasad E; Radhakrishnan TP
    Langmuir; 2013 Oct; 29(42):13050-7. PubMed ID: 24106915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability of ultrathin nanocomposite polymer films controlled by the embedding of gold nanoparticles.
    Amarandei G; Clancy I; O'Dwyer C; Arshak A; Corcoran D
    ACS Appl Mater Interfaces; 2014 Dec; 6(23):20758-67. PubMed ID: 25491070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hard templating of symmetric and asymmetric carbon thin films with three-dimensionally ordered mesoporosity.
    Tian Z; Snyder MA
    Langmuir; 2014 Aug; 30(32):9828-37. PubMed ID: 25080216
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Electrospun Polymer Fibers with Nonspherical Cross-Sections Using a Nanopressing Technique.
    Chen JT; Kao YH; Kuo TY; Liu CT; Chiu YJ; Chu CW; Chi MH; Tsai CC
    Macromol Rapid Commun; 2016 Feb; 37(3):239-45. PubMed ID: 26574243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Formation of hybrid films from perylenediimide-labeled core-shell silica-polymer nanoparticles.
    Ribeiro T; Fedorov A; Baleizão C; Farinha JP
    J Colloid Interface Sci; 2013 Jul; 401():14-22. PubMed ID: 23622686
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sacrificial polymer thin-film template with tunability to construct high-density Au nanoparticle arrays and their refractive index sensing.
    Yuan W; Lu Z; Wang H; Li CM
    Phys Chem Chem Phys; 2013 Oct; 15(37):15499-507. PubMed ID: 23942980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real time monitoring of the in situ growth of silver nanoparticles in a polymer film under ambient conditions.
    Ramesh GV; Sreedhar B; Radhakrishnan TP
    Phys Chem Chem Phys; 2009 Nov; 11(43):10059-63. PubMed ID: 19865760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanically robust, thermally stable, broadband antireflective, and superhydrophobic thin films on glass substrates.
    Xu L; Geng Z; He J; Zhou G
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9029-35. PubMed ID: 24848810
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A highly efficient and extensively reusable "dip catalyst" based on a silver-nanoparticle-embedded polymer thin film.
    Hariprasad E; Radhakrishnan TP
    Chemistry; 2010 Dec; 16(48):14378-84. PubMed ID: 21031369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifogging antireflective thin films: does the antifogging layer have to be the outmost layer?
    Zhang X; He J
    Chem Commun (Camb); 2015 Aug; 51(63):12661-4. PubMed ID: 26159117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.