These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 27642280)

  • 21. The control of lateral stability during rapid stepping reactions evoked by antero-posterior perturbation: does anticipatory control play a role?
    McIlroy WE; Maki BE
    Gait Posture; 1999 Jul; 9(3):190-8. PubMed ID: 10575080
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The strategies to regulate and to modulate the propulsive forces during gait initiation in lower limb amputees.
    Michel V; Chong RK
    Exp Brain Res; 2004 Oct; 158(3):356-65. PubMed ID: 15167976
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A Neuromechanical Model of Reduced Dorsiflexor Torque During the Anticipatory Postural Adjustments of Gait Initiation.
    Petrucci MN; Diberardino LA; Mackinnon CD; Hsiao-Wecksler ET
    IEEE Trans Neural Syst Rehabil Eng; 2018 Nov; 26(11):2210-2216. PubMed ID: 30307872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. By counteracting gravity, triceps surae sets both kinematics and kinetics of gait.
    Honeine JL; Schieppati M; Gagey O; Do MC
    Physiol Rep; 2014 Feb; 2(2):e00229. PubMed ID: 24744898
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A neuromechanical strategy for mediolateral foot placement in walking humans.
    Rankin BL; Buffo SK; Dean JC
    J Neurophysiol; 2014 Jul; 112(2):374-83. PubMed ID: 24790168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Controlling propulsive forces in gait initiation in transfemoral amputees.
    van Keeken HG; Vrieling AH; Hof AL; Halbertsma JP; Schoppen T; Postema K; Otten B
    J Biomech Eng; 2008 Feb; 130(1):011002. PubMed ID: 18298178
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Asymmetry of anticipatory postural adjustment during gait initiation.
    Hiraoka K; Hatanaka R; Nikaido Y; Jono Y; Nomura Y; Tani K; Chujo Y
    J Hum Kinet; 2014 Sep; 42():7-14. PubMed ID: 25414735
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bipedal compliant walking model generates periodic gait cycles with realistic swing dynamics.
    Lim H; Park S
    J Biomech; 2019 Jun; 91():79-84. PubMed ID: 31153624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrinsic foot muscles act to stabilise the foot when greater fluctuations in centre of pressure movement result from increased postural balance challenge.
    Ferrari E; Cooper G; Reeves ND; Hodson-Tole EF
    Gait Posture; 2020 Jun; 79():229-233. PubMed ID: 32446178
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are stance ankle plantar flexor muscles necessary to generate propulsive force during human gait initiation?
    Michel V; Do MC
    Neurosci Lett; 2002 Jun; 325(2):139-43. PubMed ID: 12044640
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A biomechanical study of gait initiation in Down syndrome.
    Corsi C; Cimolin V; Capodaglio P; Condoluci C; Galli M
    BMC Neurol; 2019 Apr; 19(1):66. PubMed ID: 30987596
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of stance width on multidirectional postural responses.
    Henry SM; Fung J; Horak FB
    J Neurophysiol; 2001 Feb; 85(2):559-70. PubMed ID: 11160493
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Amplitude modulation of the soleus H reflex in the human during active and passive stepping movements.
    Brooke JD; Cheng J; Misiaszek JE; Lafferty K
    J Neurophysiol; 1995 Jan; 73(1):102-11. PubMed ID: 7714556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Footwear and Foam Surface Alter Gait Initiation of Typical Subjects.
    Vieira MF; Sacco Ide C; Nora FG; Rosenbaum D; Lobo da Costa PH
    PLoS One; 2015; 10(8):e0135821. PubMed ID: 26270323
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Intermuscular coherence of plantar and dorsiflexor muscles in older adults with Parkinson's disease and age-matched controls during bipedal and unipedal stance.
    Smart RR; Toumi A; Harris OD; Cremoux S; Dalton BH; Wile DJ; Jakobi JM
    Front Aging Neurosci; 2023; 15():1093295. PubMed ID: 36891558
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Postural control processes during standing and step initiation in autism spectrum disorder.
    Bojanek EK; Wang Z; White SP; Mosconi MW
    J Neurodev Disord; 2020 Jan; 12(1):1. PubMed ID: 31906846
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Variability in the Center of Mass State During Initiation of Accurate Forward Step Aimed at Targets of Different Sizes.
    Yamada H; Shinya M
    Front Sports Act Living; 2021; 3():691307. PubMed ID: 34490423
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preliminary kinematic evaluation of a new stance-control knee-ankle-foot orthosis.
    Yakimovich T; Lemaire ED; Kofman J
    Clin Biomech (Bristol, Avon); 2006 Dec; 21(10):1081-9. PubMed ID: 16949186
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Environmental constraints on foot trajectory reveal the capacity for modulation of anticipatory postural adjustments during rapid triggered stepping reactions.
    Zettel JL; McIlroy WE; Maki BE
    Exp Brain Res; 2002 Sep; 146(1):38-47. PubMed ID: 12192576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.