BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 27642550)

  • 1. Designing Biopolymer Microthreads for Tissue Engineering and Regenerative Medicine.
    O'Brien MP; Carnes ME; Page RL; Gaudette GR; Pins GD
    Curr Stem Cell Rep; 2016 Jun; 2(2):147-157. PubMed ID: 27642550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries.
    Grasman JM; Do DM; Page RL; Pins GD
    Biomaterials; 2015 Dec; 72():49-60. PubMed ID: 26344363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Static axial stretching enhances the mechanical properties and cellular responses of fibrin microthreads.
    Grasman JM; Pumphrey LM; Dunphy M; Perez-Rogers J; Pins GD
    Acta Biomater; 2014 Oct; 10(10):4367-76. PubMed ID: 24954911
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Grasman JM; Page RL; Pins GD
    Tissue Eng Part A; 2017 Aug; 23(15-16):773-783. PubMed ID: 28351217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crosslinking strategies facilitate tunable structural properties of fibrin microthreads.
    Grasman JM; Page RL; Dominko T; Pins GD
    Acta Biomater; 2012 Nov; 8(11):4020-30. PubMed ID: 22824528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrete crosslinked fibrin microthread scaffolds for tissue regeneration.
    Cornwell KG; Pins GD
    J Biomed Mater Res A; 2007 Jul; 82(1):104-12. PubMed ID: 17269139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration of skeletal muscle defects with adult human cells delivered on fibrin microthreads.
    Page RL; Malcuit C; Vilner L; Vojtic I; Shaw S; Hedblom E; Hu J; Pins GD; Rolle MW; Dominko T
    Tissue Eng Part A; 2011 Nov; 17(21-22):2629-40. PubMed ID: 21699414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomimetic tendon extracellular matrix composite gradient scaffold enhances ligament-to-bone junction reconstruction.
    Liu H; Yang L; Zhang E; Zhang R; Cai D; Zhu S; Ran J; Bunpetch V; Cai Y; Heng BC; Hu Y; Dai X; Chen X; Ouyang H
    Acta Biomater; 2017 Jul; 56():129-140. PubMed ID: 28502669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced proliferation and migration of fibroblasts on the surface of fibroblast growth factor-2-loaded fibrin microthreads.
    Cornwell KG; Pins GD
    Tissue Eng Part A; 2010 Dec; 16(12):3669-77. PubMed ID: 20673132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Advancements in Decellularized Matrix-Based Biomaterials for Musculoskeletal Tissue Regeneration.
    Kim H; Kim Y; Fendereski M; Hwang NS; Hwang Y
    Adv Exp Med Biol; 2018; 1077():149-162. PubMed ID: 30357688
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tissue engineering and regenerative medicine approaches to enhance the functional response to skeletal muscle injury.
    Sicari BM; Dearth CL; Badylak SF
    Anat Rec (Hoboken); 2014 Jan; 297(1):51-64. PubMed ID: 24293290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroconductive Nanobiomaterials for Tissue Engineering and Regenerative Medicine.
    Mostafavi E; Medina-Cruz D; Kalantari K; Taymoori A; Soltantabar P; Webster TJ
    Bioelectricity; 2020 Jun; 2(2):120-149. PubMed ID: 34471843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine.
    Flégeau K; Pace R; Gautier H; Rethore G; Guicheux J; Le Visage C; Weiss P
    Adv Colloid Interface Sci; 2017 Sep; 247():589-609. PubMed ID: 28754381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofiber-based transforming growth factor-β3 release induces fibrochondrogenic differentiation of stem cells.
    Qu D; Zhu JP; Childs HR; Lu HH
    Acta Biomater; 2019 Jul; 93():111-122. PubMed ID: 30862549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Contractile Cardiac Fiber From Pluripotent Stem Cell Derived Cardiomyocytes.
    Hansen KJ; Laflamme MA; Gaudette GR
    Front Cardiovasc Med; 2018; 5():52. PubMed ID: 29942806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanostructured polymeric scaffolds for orthopaedic regenerative engineering.
    Deng M; James R; Laurencin CT; Kumbar SG
    IEEE Trans Nanobioscience; 2012 Mar; 11(1):3-14. PubMed ID: 22275722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering.
    Font Tellado S; Chiera S; Bonani W; Poh PSP; Migliaresi C; Motta A; Balmayor ER; van Griensven M
    Acta Biomater; 2018 May; 72():150-166. PubMed ID: 29550439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration.
    Sassoli C; Pierucci F; Zecchi-Orlandini S; Meacci E
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31703256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphasic, Multistructured and Hierarchical Strategies for Cartilage Regeneration.
    Correia CR; Reis RL; Mano JF
    Adv Exp Med Biol; 2015; 881():143-60. PubMed ID: 26545749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives.
    Chen FM; Wu LA; Zhang M; Zhang R; Sun HH
    Biomaterials; 2011 Apr; 32(12):3189-209. PubMed ID: 21300401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.