These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27642827)

  • 1. Biodegradability of industrial textile wastewater - batch tests.
    Paździor K; Klepacz-Smółka A; Wrębiak J; Liwarska-Bizukojć E; Ledakowicz S
    Water Sci Technol; 2016; 74(5):1079-87. PubMed ID: 27642827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anaerobic-aerobic treatment of high-strength and recalcitrant textile dyeing effluents.
    Yao HY; Guo H; Shen F; Li T; Show DY; Ling M; Yan YG; Show KY; Lee DJ
    Bioresour Technol; 2023 Jul; 379():129060. PubMed ID: 37075851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of adsorbed dyes content in the discharged sludge coming from an industrial textile wastewater treatment plant using aerobic activated sludge process.
    Haddad M; Abid S; Hamdi M; Bouallagui H
    J Environ Manage; 2018 Oct; 223():936-946. PubMed ID: 30007889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of different textile fibers on characterization of dyeing wastewater and final effluent.
    Dos Santos RF; Ramlow H; Dolzan N; Machado RAF; de Aguiar CRL; Marangoni C
    Environ Monit Assess; 2018 Oct; 190(11):693. PubMed ID: 30382411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Toxicity evaluation of textile dyeing effluent and its possible relationship with chemical oxygen demand.
    Liang J; Ning XA; Sun J; Song J; Lu J; Cai H; Hong Y
    Ecotoxicol Environ Saf; 2018 Dec; 166():56-62. PubMed ID: 30245294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocoagulation applied for textile wastewater oxidation using iron slag as electrodes.
    De Maman R; da Luz VC; Behling L; Dervanoski A; Dalla Rosa C; Pasquali GDL
    Environ Sci Pollut Res Int; 2022 May; 29(21):31713-31722. PubMed ID: 35018597
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of a simulated textile wastewater in a sequencing batch reactor (SBR) with addition of a low-cost adsorbent.
    Santos SC; Boaventura RA
    J Hazard Mater; 2015 Jun; 291():74-82. PubMed ID: 25768990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Some properties of a sequencing batch reactor system for removal of vat dyes.
    Sirianuntapiboon S; Chairattanawan K; Jungphungsukpanich S
    Bioresour Technol; 2006 Jul; 97(10):1243-52. PubMed ID: 16023339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Investigation of textile dyeing effluent using activated sludge system to assess the removal efficiency.
    Malik A; Hussain M; Uddin F; Raza W; Hussain S; Habiba UE; Malik T; Ajmal Z
    Water Environ Res; 2021 Dec; 93(12):2931-2940. PubMed ID: 34570384
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Decomposition and biodegradability enhancement of textile wastewater using a combination of electron beam irradiation and activated sludge process.
    Mohd Nasir N; Teo Ming T; Ahmadun FR; Sobri S
    Water Sci Technol; 2010; 62(1):42-7. PubMed ID: 20595752
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the performance of biodegradation of textile wastewater using polyurethane foam sponge cube as a supporting medium.
    Lin YH
    Water Sci Technol; 2010; 62(12):2801-10. PubMed ID: 21123909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of SBR feeding strategy and feed composition on the stability of aerobic granular sludge in the treatment of a simulated textile wastewater.
    Franca RDG; Ortigueira J; Pinheiro HM; Lourenço ND
    Water Sci Technol; 2017 Sep; 76(5-6):1188-1195. PubMed ID: 28876260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of nutrient deficiency on removal of organic solvents from textile manufacturing wastewater during activated sludge treatment.
    Freedman DL; Payauys AM; Karanfil T
    Environ Technol; 2005 Feb; 26(2):179-88. PubMed ID: 15791799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of volatile aromatic hydrocarbons in the wastewater from six textile dyeing wastewater treatment plants.
    Ning XA; Wang JY; Li RJ; Wen WB; Chen CM; Wang YJ; Yang ZY; Liu JY
    Chemosphere; 2015 Oct; 136():50-5. PubMed ID: 25930124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nitrification performance in a membrane bioreactor treating industrial wastewater.
    Dvořák L; Svojitka J; Wanner J; Wintgens T
    Water Res; 2013 Sep; 47(13):4412-21. PubMed ID: 23764592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Textile wastewater treatment: aerobic granular sludge vs activated sludge systems.
    Lotito AM; De Sanctis M; Di Iaconi C; Bergna G
    Water Res; 2014 May; 54():337-46. PubMed ID: 24583525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes.
    Bilal M; Iqbal M; Hu H; Zhang X
    Water Sci Technol; 2016; 73(10):2332-44. PubMed ID: 27191553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into real cotton-textile dyeing wastewater treatment using solar advanced oxidation processes.
    Soares PA; Silva TF; Manenti DR; Souza SM; Boaventura RA; Vilar VJ
    Environ Sci Pollut Res Int; 2014 Jan; 21(2):932-45. PubMed ID: 23832802
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production integrated treatment of textile wastewater by closing raw material cycles.
    Krull R
    Water Sci Technol; 2005; 52(10-11):299-307. PubMed ID: 16459804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.