BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

384 related articles for article (PubMed ID: 27643408)

  • 1. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production.
    Kanno M; Atsumi S
    ACS Synth Biol; 2017 Jan; 6(1):69-75. PubMed ID: 27643408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions.
    Hirokawa Y; Dempo Y; Fukusaki E; Hanai T
    J Biosci Bioeng; 2017 Jan; 123(1):39-45. PubMed ID: 27613406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward solar biodiesel production from CO2 using engineered cyanobacteria.
    Woo HM; Lee HJ
    FEMS Microbiol Lett; 2017 May; 364(9):. PubMed ID: 28407086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942.
    Hirokawa Y; Goto R; Umetani Y; Hanai T
    J Biosci Bioeng; 2017 Jul; 124(1):54-61. PubMed ID: 28325659
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational evaluation of Synechococcus sp. PCC 7002 metabolism for chemical production.
    Vu TT; Hill EA; Kucek LA; Konopka AE; Beliaev AS; Reed JL
    Biotechnol J; 2013 May; 8(5):619-30. PubMed ID: 23613453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global metabolic rewiring for improved CO
    Kanno M; Carroll AL; Atsumi S
    Nat Commun; 2017 Mar; 8():14724. PubMed ID: 28287087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improvement of 1,3-propanediol production using an engineered cyanobacterium, Synechococcus elongatus by optimization of the gene expression level of a synthetic metabolic pathway and production conditions.
    Hirokawa Y; Maki Y; Hanai T
    Metab Eng; 2017 Jan; 39():192-199. PubMed ID: 27998670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 2,3 Butanediol production in an obligate photoautotrophic cyanobacterium in dark conditions via diverse sugar consumption.
    McEwen JT; Kanno M; Atsumi S
    Metab Eng; 2016 Jul; 36():28-36. PubMed ID: 26979472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cyanobacterial production of 1,3-propanediol directly from carbon dioxide using a synthetic metabolic pathway.
    Hirokawa Y; Maki Y; Tatsuke T; Hanai T
    Metab Eng; 2016 Mar; 34():97-103. PubMed ID: 26769097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photomixotrophic chemical production in cyanobacteria.
    Matson MM; Atsumi S
    Curr Opin Biotechnol; 2018 Apr; 50():65-71. PubMed ID: 29179151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced stable production of ethylene in photosynthetic cyanobacterium Synechococcus elongatus PCC 7942.
    Carbonell V; Vuorio E; Aro EM; Kallio P
    World J Microbiol Biotechnol; 2019 May; 35(5):77. PubMed ID: 31069553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoautotrophic synthesis of butyrate by metabolically engineered cyanobacteria.
    Lai MJ; Lan EI
    Biotechnol Bioeng; 2019 Apr; 116(4):893-903. PubMed ID: 30552682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic Approaches to Efficiently Produce 2,3-Butanediol in a Marine Cyanobacterium.
    Nozzi NE; Case AE; Carroll AL; Atsumi S
    ACS Synth Biol; 2017 Nov; 6(11):2136-2144. PubMed ID: 28718632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Synechococcus elongatus PCC 7942 for improvement of 1,3-propanediol and glycerol production based on in silico simulation of metabolic flux distribution.
    Hirokawa Y; Matsuo S; Hamada H; Matsuda F; Hanai T
    Microb Cell Fact; 2017 Nov; 16(1):212. PubMed ID: 29178875
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photosynthetic CO
    Lee HJ; Choi J; Lee SM; Um Y; Sim SJ; Kim Y; Woo HM
    J Agric Food Chem; 2017 Feb; 65(6):1087-1092. PubMed ID: 28128561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of a modular and synthetic phosphoketolase pathway for photosynthetic production of acetone from CO2 in Synechococcus elongatus PCC 7942 under light and aerobic condition.
    Chwa JW; Kim WJ; Sim SJ; Um Y; Woo HM
    Plant Biotechnol J; 2016 Aug; 14(8):1768-76. PubMed ID: 26879003
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India.
    Jaiswal D; Sengupta A; Sohoni S; Sengupta S; Phadnavis AG; Pakrasi HB; Wangikar PP
    Sci Rep; 2018 Nov; 8(1):16632. PubMed ID: 30413737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Synechococcus elongatus PCC 7942 for continuous growth under diurnal conditions.
    McEwen JT; Machado IM; Connor MR; Atsumi S
    Appl Environ Microbiol; 2013 Mar; 79(5):1668-75. PubMed ID: 23275509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The potential of Synechococcus elongatus UTEX 2973 for sugar feedstock production.
    Song K; Tan X; Liang Y; Lu X
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):7865-75. PubMed ID: 27079574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth engineering of Synechococcus elongatus PCC 7942 for mixotrophy under natural light conditions for improved feedstock production.
    Sarnaik A; Pandit R; Lali A
    Biotechnol Prog; 2017 Sep; 33(5):1182-1192. PubMed ID: 28445599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.