BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27643605)

  • 1. Exploring the Potent Inhibition of CTP Synthase by Gemcitabine-5'-Triphosphate.
    McCluskey GD; Mohamady S; Taylor SD; Bearne SL
    Chembiochem; 2016 Dec; 17(23):2240-2249. PubMed ID: 27643605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biophysical Analysis of Bacterial CTP Synthase Filaments Formed in the Presence of the Chemotherapeutic Metabolite Gemcitabine-5'-triphosphate.
    McCluskey GD; Bearne SL
    J Mol Biol; 2018 Apr; 430(8):1201-1217. PubMed ID: 29501573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A metal-dependent conformational change provides a structural basis for the inhibition of CTP synthase by gemcitabine-5'-triphosphate.
    McLeod MJ; Tran N; McCluskey GD; Gillis TD; Bearne SL; Holyoak T
    Protein Sci; 2023 Jun; 32(6):e4648. PubMed ID: 37106216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutational analysis of conserved glycine residues 142, 143 and 146 reveals Gly(142) is critical for tetramerization of CTP synthase from Escherichia coli.
    Lunn FA; Macleod TJ; Bearne SL
    Biochem J; 2008 May; 412(1):113-21. PubMed ID: 18260824
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of product feedback regulation and drug resistance in cytidine triphosphate synthetases from the structure of a CTP-inhibited complex.
    Endrizzi JA; Kim H; Anderson PM; Baldwin EP
    Biochemistry; 2005 Oct; 44(41):13491-9. PubMed ID: 16216072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of CTP synthase from Escherichia coli by xanthines and uric acids.
    Roy AC; Lunn FA; Bearne SL
    Bioorg Med Chem Lett; 2010 Jan; 20(1):141-4. PubMed ID: 20004571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineered cytidine triphosphate synthetase with reduced product inhibition.
    Zhu M; Sun W; Wang Y; Meng J; Zhang D; Guo T; Ouyang P; Ying H; Xie J
    Protein Eng Des Sel; 2014 Jul; 27(7):225-33. PubMed ID: 24902851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a novel dUTP-dependent activity of CTP synthetase from Saccharomyces cerevisiae.
    Pappas A; Park TS; Carman GM
    Biochemistry; 1999 Dec; 38(50):16671-7. PubMed ID: 10600130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limited proteolysis of Escherichia coli cytidine 5'-triphosphate synthase. Identification of residues required for CTP formation and GTP-dependent activation of glutamine hydrolysis.
    Simard D; Hewitt KA; Lunn F; Iyengar A; Bearne SL
    Eur J Biochem; 2003 May; 270(10):2195-206. PubMed ID: 12752439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of lysine residues 297 and 306 in nucleoside triphosphate regulation of E. coli CTP synthase: inactivation by 2',3'-dialdehyde ATP and mutational analyses.
    MacLeod TJ; Lunn FA; Bearne SL
    Biochim Biophys Acta; 2006 Feb; 1764(2):199-210. PubMed ID: 16427816
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of phosphorylation of deoxycytidine and 2',2'-difluorodeoxycytidine (gemcitabine); effects of cytidine 5'-triphosphate and uridine 5'-triphosphate in relation to chemosensitivity for 2',2'-difluorodeoxycytidine.
    van Haperen VW; Veerman G; Vermorken JB; Pinedo HM; Peters G
    Biochem Pharmacol; 1996 Apr; 51(7):911-8. PubMed ID: 8651941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gemcitabine: a modulator of intracellular nucleotide and deoxynucleotide metabolism.
    Heinemann V; Schulz L; Issels RD; Plunkett W
    Semin Oncol; 1995 Aug; 22(4 Suppl 11):11-8. PubMed ID: 7481839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate specificity of CTP synthetase from Escherichia coli.
    Scheit KH; Linke HJ
    Eur J Biochem; 1982 Aug; 126(1):57-60. PubMed ID: 6751817
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substrate inhibition of Lactococcus lactis cytidine 5'-triphosphate synthase by ammonium chloride is enhanced by salt-dependent tetramer dissociation.
    Willemoës M; Larsen S
    Arch Biochem Biophys; 2003 May; 413(1):17-22. PubMed ID: 12706337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Escherichia coli CTP synthase by glutamate gamma-semialdehyde and the role of the allosteric effector GTP in glutamine hydrolysis.
    Bearne SL; Hekmat O; Macdonnell JE
    Biochem J; 2001 May; 356(Pt 1):223-32. PubMed ID: 11336655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the synthetase domain of human CTP synthetase, a target for anticancer therapy.
    Kursula P; Flodin S; Ehn M; Hammarström M; Schüler H; Nordlund P; Stenmark P
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2006 Jul; 62(Pt 7):613-7. PubMed ID: 16820675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of E. coli CTP synthase by the "positive" allosteric effector GTP.
    MacDonnell JE; Lunn FA; Bearne SL
    Biochim Biophys Acta; 2004 Jun; 1699(1-2):213-20. PubMed ID: 15158730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structures of CTP synthetase reveal ATP, UTP, and glutamine binding sites.
    Goto M; Omi R; Nakagawa N; Miyahara I; Hirotsu K
    Structure; 2004 Aug; 12(8):1413-23. PubMed ID: 15296735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of Escherichia coli cytidine triphosphate synthetase, a nucleotide-regulated glutamine amidotransferase/ATP-dependent amidoligase fusion protein and homologue of anticancer and antiparasitic drug targets.
    Endrizzi JA; Kim H; Anderson PM; Baldwin EP
    Biochemistry; 2004 Jun; 43(21):6447-63. PubMed ID: 15157079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural requirements for the activation of Escherichia coli CTP synthase by the allosteric effector GTP are stringent, but requirements for inhibition are lax.
    Lunn FA; MacDonnell JE; Bearne SL
    J Biol Chem; 2008 Jan; 283(4):2010-20. PubMed ID: 18003612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.