These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 27643612)

  • 1. The Breathing Cell: Cyclic Intermembrane Distance Variation in Reverse Electrodialysis.
    Moreno J; Slouwerhof E; Vermaas DA; Saakes M; Nijmeijer K
    Environ Sci Technol; 2016 Oct; 50(20):11386-11393. PubMed ID: 27643612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transitioning from electrodialysis to reverse electrodialysis stack design for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    Energy Convers Manag; 2021 Sep; 244():None. PubMed ID: 34538999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Doubled power density from salinity gradients at reduced intermembrane distance.
    Vermaas DA; Saakes M; Nijmeijer K
    Environ Sci Technol; 2011 Aug; 45(16):7089-95. PubMed ID: 21736348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Ionic Conductivity and Power Generation Using Ion-Exchange Resin Beads in a Reverse-Electrodialysis Stack.
    Zhang B; Gao H; Chen Y
    Environ Sci Technol; 2015 Dec; 49(24):14717-24. PubMed ID: 26560232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic, energy efficiency, and power density analysis of reverse electrodialysis power generation with natural salinity gradients.
    Yip NY; Vermaas DA; Nijmeijer K; Elimelech M
    Environ Sci Technol; 2014 May; 48(9):4925-36. PubMed ID: 24697542
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical power from sea and river water by reverse electrodialysis: a first step from the laboratory to a real power plant.
    Veerman J; Saakes M; Metz SJ; Harmsen GJ
    Environ Sci Technol; 2010 Dec; 44(23):9207-12. PubMed ID: 20964356
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scale-up of reverse electrodialysis for energy generation from high concentration salinity gradients.
    Hulme AM; Davey CJ; Tyrrel S; Pidou M; McAdam EJ
    J Memb Sci; 2021 Jun; 627():119245. PubMed ID: 34083864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced energy recovery using a cascaded reverse electrodialysis stack for salinity gradient power generation.
    Nam JY; Jwa E; Eom H; Kim H; Hwang K; Jeong N
    Water Res; 2021 Jul; 200():117255. PubMed ID: 34062402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system.
    Post JW; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2008 Aug; 42(15):5785-90. PubMed ID: 18754509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial reverse electrodialysis cells for synergistically enhanced power production.
    Kim Y; Logan BE
    Environ Sci Technol; 2011 Jul; 45(13):5834-9. PubMed ID: 21644573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO
    Moreno J; de Hart N; Saakes M; Nijmeijer K
    Water Res; 2017 Nov; 125():23-31. PubMed ID: 28834766
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Effect of Feed Solution Temperature on the Power Output Performance of a Pilot-Scale Reverse Electrodialysis (RED) System with Different Intermediate Distance.
    Mehdizadeh S; Yasukawa M; Abo T; Kuno M; Noguchi Y; Higa M
    Membranes (Basel); 2019 Jun; 9(6):. PubMed ID: 31216734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Power Generation Performance of Reverse Electrodialysis (RED) Using Various Ion Exchange Membranes and Power Output Prediction for a Large RED Stack.
    Sugimoto Y; Ujike R; Higa M; Kakihana Y; Higa M
    Membranes (Basel); 2022 Nov; 12(11):. PubMed ID: 36422133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells.
    Kim Y; Logan BE
    Proc Natl Acad Sci U S A; 2011 Sep; 108(39):16176-81. PubMed ID: 21930953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlations of Ion Composition and Power Efficiency in a Reverse Electrodialysis Heat Engine.
    Luo F; Wang Y; Sha M; Wei Y
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31766700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Salinity Gradients for Sustainable Energy: Primer, Progress, and Prospects.
    Yip NY; Brogioli D; Hamelers HV; Nijmeijer K
    Environ Sci Technol; 2016 Nov; 50(22):12072-12094. PubMed ID: 27718544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active Control of Irreversible Faradic Reactions to Enhance the Performance of Reverse Electrodialysis for Energy Production from Salinity Gradients.
    Oh Y; Han JH; Kim H; Jeong N; Vermaas DA; Park JS; Chae S
    Environ Sci Technol; 2021 Aug; 55(16):11388-11396. PubMed ID: 34310128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodic feedwater reversal and air sparging as antifouling strategies in reverse electrodialysis.
    Vermaas DA; Kunteng D; Veerman J; Saakes M; Nijmeijer K
    Environ Sci Technol; 2014; 48(5):3065-73. PubMed ID: 24512109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlations between Properties of Pore-Filling Ion Exchange Membranes and Performance of a Reverse Electrodialysis Stack for High Power Density.
    Kim H; Choi J; Jeong N; Jung YG; Kim H; Kim D; Yang S
    Membranes (Basel); 2021 Aug; 11(8):. PubMed ID: 34436372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.