These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
270 related articles for article (PubMed ID: 27643617)
1. Activation of bacterial lytic polysaccharide monooxygenases with cellobiose dehydrogenase. Loose JS; Forsberg Z; Kracher D; Scheiblbrandner S; Ludwig R; Eijsink VG; Vaaje-Kolstad G Protein Sci; 2016 Dec; 25(12):2175-2186. PubMed ID: 27643617 [TBL] [Abstract][Full Text] [Related]
2. The Pyrroloquinoline-Quinone-Dependent Pyranose Dehydrogenase from Coprinopsis cinerea Drives Lytic Polysaccharide Monooxygenase Action. Várnai A; Umezawa K; Yoshida M; Eijsink VGH Appl Environ Microbiol; 2018 Jun; 84(11):. PubMed ID: 29602785 [TBL] [Abstract][Full Text] [Related]
3. Polysaccharide oxidation by lytic polysaccharide monooxygenase is enhanced by engineered cellobiose dehydrogenase. Kracher D; Forsberg Z; Bissaro B; Gangl S; Preims M; Sygmund C; Eijsink VGH; Ludwig R FEBS J; 2020 Mar; 287(5):897-908. PubMed ID: 31532909 [TBL] [Abstract][Full Text] [Related]
4. Comparative study of two chitin-active and two cellulose-active AA10-type lytic polysaccharide monooxygenases. Forsberg Z; Røhr AK; Mekasha S; Andersson KK; Eijsink VG; Vaaje-Kolstad G; Sørlie M Biochemistry; 2014 Mar; 53(10):1647-56. PubMed ID: 24559135 [TBL] [Abstract][Full Text] [Related]
5. Heterologously Expressed Cellobiose Dehydrogenase Acts as Efficient Electron-Donor of Lytic Polysaccharide Monooxygenase for Cellulose Degradation in Adnan M; Ma X; Xie Y; Waheed A; Liu G Int J Mol Sci; 2023 Dec; 24(24):. PubMed ID: 38139031 [TBL] [Abstract][Full Text] [Related]
6. Interactions of a fungal lytic polysaccharide monooxygenase with β-glucan substrates and cellobiose dehydrogenase. Courtade G; Wimmer R; Røhr ÅK; Preims M; Felice AK; Dimarogona M; Vaaje-Kolstad G; Sørlie M; Sandgren M; Ludwig R; Eijsink VG; Aachmann FL Proc Natl Acad Sci U S A; 2016 May; 113(21):5922-7. PubMed ID: 27152023 [TBL] [Abstract][Full Text] [Related]
7. Kinetic insights into the role of the reductant in H Kuusk S; Kont R; Kuusk P; Heering A; Sørlie M; Bissaro B; Eijsink VGH; Väljamäe P J Biol Chem; 2019 Feb; 294(5):1516-1528. PubMed ID: 30514757 [TBL] [Abstract][Full Text] [Related]
10. Characterization of a lytic polysaccharide monooxygenase from Aspergillus fumigatus shows functional variation among family AA11 fungal LPMOs. Støpamo FG; Røhr ÅK; Mekasha S; Petrović DM; Várnai A; Eijsink VGH J Biol Chem; 2021 Dec; 297(6):101421. PubMed ID: 34798071 [TBL] [Abstract][Full Text] [Related]
11. Structural and functional characterization of a conserved pair of bacterial cellulose-oxidizing lytic polysaccharide monooxygenases. Forsberg Z; Mackenzie AK; Sørlie M; Røhr ÅK; Helland R; Arvai AS; Vaaje-Kolstad G; Eijsink VG Proc Natl Acad Sci U S A; 2014 Jun; 111(23):8446-51. PubMed ID: 24912171 [TBL] [Abstract][Full Text] [Related]
12. pH-Dependent Relationship between Catalytic Activity and Hydrogen Peroxide Production Shown via Characterization of a Lytic Polysaccharide Monooxygenase from Hegnar OA; Petrovic DM; Bissaro B; Alfredsen G; Várnai A; Eijsink VGH Appl Environ Microbiol; 2019 Mar; 85(5):. PubMed ID: 30578267 [TBL] [Abstract][Full Text] [Related]
13. Interaction between Cellobiose Dehydrogenase and Lytic Polysaccharide Monooxygenase. Laurent CVFP; Breslmayr E; Tunega D; Ludwig R; Oostenbrink C Biochemistry; 2019 Mar; 58(9):1226-1235. PubMed ID: 30715860 [TBL] [Abstract][Full Text] [Related]
14. Kinetics of H Kuusk S; Bissaro B; Kuusk P; Forsberg Z; Eijsink VGH; Sørlie M; Väljamäe P J Biol Chem; 2018 Jan; 293(2):523-531. PubMed ID: 29138240 [TBL] [Abstract][Full Text] [Related]
15. Characterization of a bacterial copper-dependent lytic polysaccharide monooxygenase with an unusual second coordination sphere. Munzone A; El Kerdi B; Fanuel M; Rogniaux H; Ropartz D; Réglier M; Royant A; Simaan AJ; Decroos C FEBS J; 2020 Aug; 287(15):3298-3314. PubMed ID: 31903721 [TBL] [Abstract][Full Text] [Related]
16. The Yao RA; Reyre J-L; Tamburrini KC; Haon M; Tranquet O; Nalubothula A; Mukherjee S; Le Gall S; Grisel S; Longhi S; Madhuprakash J; Bissaro B; Berrin J-G Appl Environ Microbiol; 2023 Oct; 89(10):e0057323. PubMed ID: 37702503 [TBL] [Abstract][Full Text] [Related]
17. Expression and characterization of a lytic polysaccharide monooxygenase from Bacillus thuringiensis. Zhang H; Zhao Y; Cao H; Mou G; Yin H Int J Biol Macromol; 2015 Aug; 79():72-5. PubMed ID: 25936286 [TBL] [Abstract][Full Text] [Related]
18. Sugar oxidoreductases and LPMOs - two sides of the same polysaccharide degradation story? Manavalan T; Stepnov AA; Hegnar OA; Eijsink VGH Carbohydr Res; 2021 Jul; 505():108350. PubMed ID: 34049079 [TBL] [Abstract][Full Text] [Related]
19. Insights into the H Hedison TM; Breslmayr E; Shanmugam M; Karnpakdee K; Heyes DJ; Green AP; Ludwig R; Scrutton NS; Kracher D FEBS J; 2021 Jul; 288(13):4115-4128. PubMed ID: 33411405 [TBL] [Abstract][Full Text] [Related]
20. Structural and Functional Analysis of a Lytic Polysaccharide Monooxygenase Important for Efficient Utilization of Chitin in Cellvibrio japonicus. Forsberg Z; Nelson CE; Dalhus B; Mekasha S; Loose JS; Crouch LI; Røhr ÅK; Gardner JG; Eijsink VG; Vaaje-Kolstad G J Biol Chem; 2016 Apr; 291(14):7300-12. PubMed ID: 26858252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]