BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27643676)

  • 21. A Simulation of the Viscoelastic Behaviour of Heel Pad During Weight-Bearing Activities of Daily Living.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    Ann Biomed Eng; 2017 Dec; 45(12):2750-2761. PubMed ID: 28948405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The nonlinear finite element analysis and plantar pressure measurement for various shoe soles in heel region.
    Shiang TY
    Proc Natl Sci Counc Repub China B; 1997 Oct; 21(4):168-74. PubMed ID: 9369026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Med Eng Phys; 2013 Apr; 35(4):441-7. PubMed ID: 22789809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
    Naemi R; Chatzistergos PE; Chockalingam N
    Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    Med Eng Phys; 2017 Dec; 50():83-88. PubMed ID: 29079047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of loading history on material properties of human heel pad: an in-vivo pilot investigation during gait.
    Teng ZL; Yang XG; Geng X; Gu YJ; Huang R; Chen WM; Wang C; Chen L; Zhang C; Helili M; Huang JZ; Wang X; Ma X
    BMC Musculoskelet Disord; 2022 Mar; 23(1):254. PubMed ID: 35292004
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A 3-dimensional finite element model of the human foot and ankle for insole design.
    Cheung JT; Zhang M
    Arch Phys Med Rehabil; 2005 Feb; 86(2):353-8. PubMed ID: 15706568
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Investigation of the optimum heel pad stiffness: a modeling study.
    Lin CY; Chuang HJ; Cortes DH
    Australas Phys Eng Sci Med; 2017 Sep; 40(3):585-593. PubMed ID: 28653146
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effect of heel elevation on strain within the plantar aponeurosis: in vitro study.
    Kogler GF; Veer FB; Verhulst SJ; Solomonidis SE; Paul JP
    Foot Ankle Int; 2001 May; 22(5):433-9. PubMed ID: 11428764
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigations on the viscoelastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis.
    Matteoli S; Fontanella CG; Carniel EL; Wilhjelm JE; Virga A; Corbinz N; Corvi A; Natali AN
    Proc Inst Mech Eng H; 2013 Mar; 227(3):334-42. PubMed ID: 23662350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The compressive material properties of the plantar soft tissue.
    Ledoux WR; Blevins JJ
    J Biomech; 2007; 40(13):2975-81. PubMed ID: 17433335
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of loading conditions on stress in the barefooted heel pad.
    Spears IR; Miller-Young JE; Waters M; Rome K
    Med Sci Sports Exerc; 2005 Jun; 37(6):1030-6. PubMed ID: 15947730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of ankle orientation on heel loading and knee stability for post-stroke individuals wearing ankle-foot orthoses.
    Silver-Thorn B; Herrmann A; Current T; McGuire J
    Prosthet Orthot Int; 2011 Jun; 35(2):150-62. PubMed ID: 21515899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of material properties of heel pad between adults with and without type 2 diabetes history: An
    Yang XG; Teng ZL; Zhang ZM; Wang K; Huang R; Chen WM; Wang C; Chen L; Zhang C; Huang JZ; Wang X; Ma X; Geng X
    Front Endocrinol (Lausanne); 2022; 13():894383. PubMed ID: 36060939
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling.
    Natali AN; Fontanella CG; Carniel EL; Young M
    Proc Inst Mech Eng H; 2011 May; 225(5):449-59. PubMed ID: 21755775
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Patellar tendon bearing brace: combined effect of heel clearance and ankle status on foot plantar pressure.
    Alimerzaloo F; Kashani RV; Saeedi H; Farzi M; Fallahian N
    Prosthet Orthot Int; 2014 Feb; 38(1):34-8. PubMed ID: 23690286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Definition and evaluation of a finite element model of the human heel for diabetic foot ulcer prevention under shearing loads.
    Trebbi A; Fougeron N; Payan Y
    Med Eng Phys; 2023 Aug; 118():104022. PubMed ID: 37536842
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The influence of high-heeled shoes on strain and tension force of the anterior talofibular ligament and plantar fascia during balanced standing and walking.
    Yu J; Wong DW; Zhang H; Luo ZP; Zhang M
    Med Eng Phys; 2016 Oct; 38(10):1152-6. PubMed ID: 27498844
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional morphology of heel fat pad: an in vivo computed tomography study.
    Campanelli V; Fantini M; Faccioli N; Cangemi A; Pozzo A; Sbarbati A
    J Anat; 2011 Nov; 219(5):622-31. PubMed ID: 21848602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reduction of plantar heel pressures: Insole design using finite element analysis.
    Goske S; Erdemir A; Petre M; Budhabhatti S; Cavanagh PR
    J Biomech; 2006; 39(13):2363-70. PubMed ID: 16197952
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.