These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 27643811)

  • 1. Scoring of de novo Designed Chemical Entities by Macromolecular Target Prediction.
    Button AL; Hiss JA; Schneider P; Schneider G
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27643811
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix-based Molecular Descriptors for Prospective Virtual Compound Screening.
    Grisoni F; Reker D; Schneider P; Friedrich L; Consonni V; Todeschini R; Koeberle A; Werz O; Schneider G
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 27650559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction-driven de novo design, synthesis and testing of potential type II kinase inhibitors.
    Schneider G; Geppert T; Hartenfeller M; Reisen F; Klenner A; Reutlinger M; Hähnke V; Hiss JA; Zettl H; Keppner S; Spänkuch B; Schneider P
    Future Med Chem; 2011 Mar; 3(4):415-24. PubMed ID: 21452978
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The current limits in virtual screening and property prediction.
    Hutter MC
    Future Med Chem; 2018 Jul; 10(13):1623-1635. PubMed ID: 29953247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine Learning Classification Models to Improve the Docking-based Screening: A Case of PI3K-Tankyrase Inhibitors.
    Berishvili VP; Voronkov AE; Radchenko EV; Palyulin VA
    Mol Inform; 2018 Nov; 37(11):e1800030. PubMed ID: 29901257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinase inhibitor data modeling and de novo inhibitor design with fragment approaches.
    Vieth M; Erickson J; Wang J; Webster Y; Mader M; Higgs R; Watson I
    J Med Chem; 2009 Oct; 52(20):6456-66. PubMed ID: 19791746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-QSAR, molecular dynamics simulations, and molecular docking studies on pyridoaminotropanes and tetrahydroquinazoline as mTOR inhibitors.
    Chaube U; Bhatt H
    Mol Divers; 2017 Aug; 21(3):741-759. PubMed ID: 28577112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coping with polypharmacology by computational medicinal chemistry.
    Schneider G; Reker D; Rodrigues T; Schneider P
    Chimia (Aarau); 2014 Sep; 68(9):648-53. PubMed ID: 25437786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical-Space-Based de Novo Design Method To Generate Drug-Like Molecules.
    Takeda S; Kaneko H; Funatsu K
    J Chem Inf Model; 2016 Oct; 56(10):1885-1893. PubMed ID: 27632418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VirtualToxLab: Exploring the Toxic Potential of Rejuvenating Substances Found in Traditional Medicines.
    Smieško M; Vedani A
    Methods Mol Biol; 2016; 1425():121-37. PubMed ID: 27311465
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of novel ROCK inhibitors using fragment-based de novo drug design approach.
    Arya H; Coumar MS
    J Mol Model; 2020 Aug; 26(9):249. PubMed ID: 32829478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epidermal growth factor receptor (EGFR) structure-based bioactive pharmacophore models for identifying next-generation inhibitors against clinically relevant EGFR mutations.
    Panicker PS; Melge AR; Biswas L; Keechilat P; Mohan CG
    Chem Biol Drug Des; 2017 Oct; 90(4):629-636. PubMed ID: 28303669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery of tyrosine kinase inhibitors by docking into an inactive kinase conformation generated by molecular dynamics.
    Zhao H; Huang D; Caflisch A
    ChemMedChem; 2012 Nov; 7(11):1983-90. PubMed ID: 22976951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Pareto Algorithm for Efficient De Novo Design of Multi-functional Molecules.
    Daeyaert F; Deem MW
    Mol Inform; 2017 Jan; 36(1-2):. PubMed ID: 28124835
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification and further development of potent TBK1 inhibitors.
    Richters A; Basu D; Engel J; Ercanoglu MS; Balke-Want H; Tesch R; Thomas RK; Rauh D
    ACS Chem Biol; 2015 Jan; 10(1):289-98. PubMed ID: 25540906
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Active Search for Computer-aided Drug Design.
    Oglic D; Oatley SA; Macdonald SJF; Mcinally T; Garnett R; Hirst JD; Gärtner T
    Mol Inform; 2018 Jan; 37(1-2):. PubMed ID: 29388736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. De novo generation of multi-target compounds using deep generative chemistry.
    Munson BP; Chen M; Bogosian A; Kreisberg JF; Licon K; Abagyan R; Kuenzi BM; Ideker T
    Nat Commun; 2024 May; 15(1):3636. PubMed ID: 38710699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. De Novo Fragment Design for Drug Discovery and Chemical Biology.
    Rodrigues T; Reker D; Welin M; Caldera M; Brunner C; Gabernet G; Schneider P; Walse B; Schneider G
    Angew Chem Int Ed Engl; 2015 Dec; 54(50):15079-83. PubMed ID: 26486226
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic tailoring and transplanting: a practical method that makes virtual screening more useful.
    Li Y; Zhao Y; Liu Z; Wang R
    J Chem Inf Model; 2011 Jun; 51(6):1474-91. PubMed ID: 21520918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NAOMInext - Synthetically feasible fragment growing in a structure-based design context.
    Sommer K; Flachsenberg F; Rarey M
    Eur J Med Chem; 2019 Feb; 163():747-762. PubMed ID: 30576905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.