These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 27643990)

  • 1. Acute Acrolein Exposure Induces Impairment of Vocal Fold Epithelial Barrier Function.
    Liu X; Zheng W; Sivasankar MP
    PLoS One; 2016; 11(9):e0163237. PubMed ID: 27643990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vocal fold ion transport and mucin expression following acrolein exposure.
    Levendoski EE; Sivasankar MP
    J Membr Biol; 2014 May; 247(5):441-50. PubMed ID: 24648011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypertonic challenge to porcine vocal folds: effects on epithelial barrier function.
    Sivasankar M; Erickson E; Rosenblatt M; Branski RC
    Otolaryngol Head Neck Surg; 2010 Jan; 142(1):79-84. PubMed ID: 20096227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subacute acrolein exposure to rat larynx in vivo.
    Liu X; Durkes AC; Schrock W; Zheng W; Sivasankar MP
    Laryngoscope; 2019 Sep; 129(9):E313-E317. PubMed ID: 30582162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utility of cell viability assays for use with ex vivo vocal fold epithelial tissue.
    Erickson-DiRenzo E; Sivasankar MP; Thibeault SL
    Laryngoscope; 2015 May; 125(5):E180-5. PubMed ID: 25511412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolonged phonation impairs the integrity and barrier function of porcine vocal fold epithelium: a preliminary study.
    Zhang C; Paddock K; Chou A; Scholp A; Gong T; Jiang JJ
    Eur Arch Otorhinolaryngol; 2018 Jun; 275(6):1547-1556. PubMed ID: 29671091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute Nanoparticle Exposure to Vocal Folds: A Laboratory Study.
    Liu X; Walimbe T; Schrock WP; Zheng W; Sivasankar MP
    J Voice; 2017 Nov; 31(6):662-668. PubMed ID: 28438490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulated reflux decreases vocal fold epithelial barrier resistance.
    Erickson E; Sivasankar M
    Laryngoscope; 2010 Aug; 120(8):1569-75. PubMed ID: 20564752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process of tight junction recovery in the injured vocal fold epithelium: Morphological and paracellular permeability analysis.
    Suzuki R; Katsuno T; Kishimoto Y; Nakamura R; Mizuta M; Suehiro A; Yamashita M; Nakamura T; Tateya I; Omori K
    Laryngoscope; 2018 Apr; 128(4):E150-E156. PubMed ID: 29086429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raised intensity phonation compromises vocal fold epithelial barrier integrity.
    Rousseau B; Suehiro A; Echemendia N; Sivasankar M
    Laryngoscope; 2011 Feb; 121(2):346-51. PubMed ID: 21271586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vivo investigation of acidified pepsin exposure to porcine vocal fold epithelia.
    Durkes A; Sivasankar MP
    Laryngoscope; 2016 Jan; 126(1):E12-7. PubMed ID: 26153224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute stress to excised vocal fold epithelium from reactive oxygen species.
    Alper R; Fu X; Erickson-Levendoski E; Zheng W; Sivasankar M
    Laryngoscope; 2011 Oct; 121(10):2180-4. PubMed ID: 21898441
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of cigarette smoke condensate on vocal fold transepithelial resistance and inflammatory signaling in vocal fold fibroblasts.
    Branski RC; Zhou H; Kraus DH; Sivasankar M
    Laryngoscope; 2011 Mar; 121(3):601-5. PubMed ID: 21298639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GLP-2 enhances barrier formation and attenuates TNFα-induced changes in a Caco-2 cell model of the intestinal barrier.
    Moran GW; O'Neill C; McLaughlin JT
    Regul Pept; 2012 Oct; 178(1-3):95-101. PubMed ID: 22809889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tight junction disruption by cadmium in an in vitro human airway tissue model.
    Cao X; Lin H; Muskhelishvili L; Latendresse J; Richter P; Heflich RH
    Respir Res; 2015 Feb; 16(1):30. PubMed ID: 25851441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cobalt chloride compromises transepithelial barrier properties of CaCo-2 BBe human gastrointestinal epithelial cell layers.
    DiGuilio KM; Valenzano MC; Rybakovsky E; Mullin JM
    BMC Gastroenterol; 2018 Jan; 18(1):2. PubMed ID: 29304733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cellular mechanisms of mainstream cigarette smoke-induced lung epithelial tight junction permeability changes in vitro.
    Olivera DS; Boggs SE; Beenhouwer C; Aden J; Knall C
    Inhal Toxicol; 2007 Jan; 19(1):13-22. PubMed ID: 17127639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cigarette smoke-induced disruption of bronchial epithelial tight junctions is prevented by transforming growth factor-β.
    Schamberger AC; Mise N; Jia J; Genoyer E; Yildirim AÖ; Meiners S; Eickelberg O
    Am J Respir Cell Mol Biol; 2014 Jun; 50(6):1040-52. PubMed ID: 24358952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mainstream Cigarette Smoke Impacts the Mouse Vocal Fold Epithelium and Mucus Barrier.
    Erickson-DiRenzo E; Easwaran M; Martinez JD; Dewan K; Sung CK
    Laryngoscope; 2021 Nov; 131(11):2530-2539. PubMed ID: 33864646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protective effects of Lactobacillus plantarum on epithelial barrier disruption caused by enterotoxigenic Escherichia coli in intestinal porcine epithelial cells.
    Wu Y; Zhu C; Chen Z; Chen Z; Zhang W; Ma X; Wang L; Yang X; Jiang Z
    Vet Immunol Immunopathol; 2016 Apr; 172():55-63. PubMed ID: 27032504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.