These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 27645106)

  • 1. Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors.
    Wu Y; Hadly EA; Teng W; Hao Y; Liang W; Liu Y; Wang H
    Sci Rep; 2016 Sep; 6():33578. PubMed ID: 27645106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: Retinal transcriptomes and ocular media transmittance.
    Höglund J; Mitkus M; Olsson P; Lind O; Drews A; Bloch NI; Kelber A; Strandh M
    Vision Res; 2019 May; 158():109-119. PubMed ID: 30825468
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Raptor genomes reveal evolutionary signatures of predatory and nocturnal lifestyles.
    Cho YS; Jun JH; Kim JA; Kim HM; Chung O; Kang SG; Park JY; Kim HJ; Kim S; Kim HJ; Jang JH; Na KJ; Kim J; Park SG; Lee HY; Manica A; Mindell DP; Fuchs J; Edwards JS; Weber JA; Witt CC; Yeo JH; Kim S; Bhak J
    Genome Biol; 2019 Aug; 20(1):181. PubMed ID: 31464627
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative genomics sheds light on the predatory lifestyle of accipitrids and owls.
    Zhou C; Jin J; Peng C; Wen Q; Wang G; Wei W; Jiang X; Price M; Cui K; Meng Y; Song Z; Li J; Zhang X; Fan Z; Yue B
    Sci Rep; 2019 Feb; 9(1):2249. PubMed ID: 30783131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic Evidence for Sensorial Adaptations to a Nocturnal Predatory Lifestyle in Owls.
    Espíndola-Hernández P; Mueller JC; Carrete M; Boerno S; Kempenaers B
    Genome Biol Evol; 2020 Oct; 12(10):1895-1908. PubMed ID: 32770228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual adaptations of diurnal and nocturnal raptors.
    Potier S; Mitkus M; Kelber A
    Semin Cell Dev Biol; 2020 Oct; 106():116-126. PubMed ID: 32654971
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral shifts of mammalian ultraviolet-sensitive pigments (short wavelength-sensitive opsin 1) are associated with eye length and photic niche evolution.
    Emerling CA; Huynh HT; Nguyen MA; Meredith RW; Springer MS
    Proc Biol Sci; 2015 Nov; 282(1819):. PubMed ID: 26582021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic bases underlying the adaptive radiation of core landbirds.
    Wu Y; Yan Y; Zhao Y; Gu L; Wang S; Johnson DH
    BMC Ecol Evol; 2021 Aug; 21(1):162. PubMed ID: 34454438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype.
    Borges R; Fonseca J; Gomes C; Johnson WE; O'Brien SJ; Zhang G; Gilbert MTP; Jarvis ED; Antunes A
    Genome Biol Evol; 2019 Aug; 11(8):2244-2255. PubMed ID: 31386143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phylogenetic position of avian nocturnal and diurnal raptors.
    Mahmood MT; McLenachan PA; Gibb GC; Penny D
    Genome Biol Evol; 2014 Feb; 6(2):326-32. PubMed ID: 24448983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds.
    Borges R; Khan I; Johnson WE; Gilbert MT; Zhang G; Jarvis ED; O'Brien SJ; Antunes A
    BMC Genomics; 2015 Oct; 16():751. PubMed ID: 26438339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the toepads of Australian diurnal and nocturnal raptors with nonpredatory taxa: Insights into functional morphology.
    Tsang LR; Wilson LAB; McDonald PG
    J Morphol; 2019 Nov; 280(11):1682-1692. PubMed ID: 31441539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retinal photoreceptor arrangement, SWS1 and LWS opsin sequence, and electroretinography in the South American marsupial Thylamys elegans (Waterhouse, 1839).
    Palacios AG; Bozinovic F; Vielma A; Arrese CA; Hunt DM; Peichl L
    J Comp Neurol; 2010 May; 518(9):1589-602. PubMed ID: 20187149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral, morphological and physiological correlates of diurnal and nocturnal vision in selected wading bird species.
    Rojas LM; McNeil R; Cabana T; Lachapelle P
    Brain Behav Evol; 1999; 53(5-6):227-42. PubMed ID: 10473901
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corrigendum: Retinal transcriptome sequencing sheds light on the adaptation to nocturnal and diurnal lifestyles in raptors.
    Wu Y; Hadly EA; Teng W; Hao Y; Liang W; Liu Y; Wang H
    Sci Rep; 2016 Nov; 6():35895. PubMed ID: 27821873
    [No Abstract]   [Full Text] [Related]  

  • 16. Signatures of functional constraint at aye-aye opsin genes: the potential of adaptive color vision in a nocturnal primate.
    Perry GH; Martin RD; Verrelli BC
    Mol Biol Evol; 2007 Sep; 24(9):1963-70. PubMed ID: 17575304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Independent pseudogenization of CYP2J19 in penguins, owls and kiwis implicates gene in red carotenoid synthesis.
    Emerling CA
    Mol Phylogenet Evol; 2018 Jan; 118():47-53. PubMed ID: 28943375
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in opsin genes correlates with signalling ecology in North American fireflies.
    Sander SE; Hall DW
    Mol Ecol; 2015 Sep; 24(18):4679-96. PubMed ID: 26289828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread nocturnality of living birds stemming from their common ancestor.
    Wu Y
    BMC Evol Biol; 2019 Oct; 19(1):189. PubMed ID: 31619159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomic signatures of the evolution of a diurnal lifestyle in Strigiformes.
    Espíndola-Hernández P; Mueller JC; Kempenaers B
    G3 (Bethesda); 2022 Jul; 12(8):. PubMed ID: 35640557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.