These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
551 related articles for article (PubMed ID: 27645227)
1. Measurement of corneal and limbal epithelial thickness by anterior segment optical coherence tomography and in vivo confocal microscopy. Le Q; Chen Y; Yang Y; Xu J BMC Ophthalmol; 2016 Sep; 16(1):163. PubMed ID: 27645227 [TBL] [Abstract][Full Text] [Related]
2. Corneal Epithelial Thickness Measured Using Anterior Segment Optical Coherence Tomography as a Diagnostic Parameter for Limbal Stem Cell Deficiency. Liang Q; Le Q; Cordova DW; Tseng CH; Deng SX Am J Ophthalmol; 2020 Aug; 216():132-139. PubMed ID: 32283095 [TBL] [Abstract][Full Text] [Related]
3. In vivo confocal microscopy and anterior segment optical coherence tomography analysis of the cornea in nephropathic cystinosis. Labbé A; Niaudet P; Loirat C; Charbit M; Guest G; Baudouin C Ophthalmology; 2009 May; 116(5):870-6. PubMed ID: 19410944 [TBL] [Abstract][Full Text] [Related]
4. Photophobia and corneal crystal density in nephropathic cystinosis: an in vivo confocal microscopy and anterior-segment optical coherence tomography study. Liang H; Baudouin C; Tahiri Joutei Hassani R; Brignole-Baudouin F; Labbe A Invest Ophthalmol Vis Sci; 2015 May; 56(5):3218-25. PubMed ID: 26024106 [TBL] [Abstract][Full Text] [Related]
5. Association of Changes in Thickness of Limbal Epithelial and Stroma with Corneal Scars Detected by High-Resolution Anterior Segment Optic Coherence Tomography. Guclu H; Sattarpanah S; Gurlu V Klin Monbl Augenheilkd; 2024 Jun; 241(6):744-750. PubMed ID: 35504299 [TBL] [Abstract][Full Text] [Related]
6. Age-related changes in human corneal epithelial thickness measured with anterior segment optical coherence tomography. Yang Y; Hong J; Deng SX; Xu J Invest Ophthalmol Vis Sci; 2014 Jul; 55(8):5032-8. PubMed ID: 25052994 [TBL] [Abstract][Full Text] [Related]
7. En-face optical coherence tomography as a novel tool for exploring the ocular surface: a pilot comparative study to conventional B-scans and in vivo confocal microscopy. Tahiri Joutei Hassani R; Liang H; El Sanharawi M; Brasnu E; Kallel S; Labbé A; Baudouin C Ocul Surf; 2014 Oct; 12(4):285-306. PubMed ID: 25284774 [TBL] [Abstract][Full Text] [Related]
8. Correlation between the existence of the palisades of Vogt and limbal epithelial thickness in limbal stem cell deficiency. Le Q; Yang Y; Deng SX; Xu J Clin Exp Ophthalmol; 2017 Apr; 45(3):224-231. PubMed ID: 27591548 [TBL] [Abstract][Full Text] [Related]
9. Diagnosis of limbal stem cell deficiency based on corneal epithelial thickness measured on anterior segment optical coherence tomography. Mehtani A; Agarwal MC; Sharma S; Chaudhary S Indian J Ophthalmol; 2017 Nov; 65(11):1120-1126. PubMed ID: 29133636 [TBL] [Abstract][Full Text] [Related]
10. Assessment of corneal and limbal epithelial thickness by spectral-domain optical coherence tomography in brachycephalic and non-brachycephalic dogs. Jeong Y; Kang S; Ahn J; Kim S; Kim H; Park J; Seo K Vet Ophthalmol; 2023 Apr; 26 Suppl 1():89-97. PubMed ID: 35904513 [TBL] [Abstract][Full Text] [Related]
11. Comparative evaluation of corneal and limbal epithelial thickness in brachycephalic dogs with and without corneal diseases using spectral domain optical coherence tomography. Jeong Y; Kang S; Seo K Vet Ophthalmol; 2024 Jan; 27(1):30-39. PubMed ID: 37118910 [TBL] [Abstract][Full Text] [Related]
12. A Case of Corneal Neovascularization Misdiagnosed as Total Limbal Stem Cell Deficiency. Le Q; Samson CM; Deng SX Cornea; 2018 Aug; 37(8):1067-1070. PubMed ID: 29781927 [TBL] [Abstract][Full Text] [Related]
13. Corneal thickness and volume measurements by swept source anterior segment optical coherence tomography in normal subjects. Fukuda R; Usui T; Miyai T; Mori Y; Miyata K; Amano S Curr Eye Res; 2013 May; 38(5):531-6. PubMed ID: 23448300 [TBL] [Abstract][Full Text] [Related]
14. Biomarkers of in vivo limbal stem cell function. Le Q; Chauhan T; Cordova D; Tseng CH; Deng SX Ocul Surf; 2022 Jan; 23():123-130. PubMed ID: 34902592 [TBL] [Abstract][Full Text] [Related]
15. [ Wang LY; Wei ZY; Cao K; Su GY; Liang QF Zhonghua Yan Ke Za Zhi; 2020 Jun; 56(6):447-455. PubMed ID: 32842327 [No Abstract] [Full Text] [Related]
16. Spectral-domain Optical Coherence Tomography in Limbal Stem Cell Deficiency. A Case-Control Study. Banayan N; Georgeon C; Grieve K; Borderie VM Am J Ophthalmol; 2018 Jun; 190():179-190. PubMed ID: 29621511 [TBL] [Abstract][Full Text] [Related]
17. [In vivo confocal microscopy and optical coherence tomography as innovative tools for the diagnosis of limbal stem cell deficiency (French translation of the article)]. Banayan N; Georgeon C; Grieve K; Ghoubay D; Baudouin F; Borderie V J Fr Ophtalmol; 2018 Dec; 41(10):968-980. PubMed ID: 30473234 [TBL] [Abstract][Full Text] [Related]
18. [Diagnostic capabilities of optical coherence tomography and confocal laser scanning microscopy in studying manifestations of aniridia-associated keratopathy]. Voskresenskaya AA; Pozdeeva NA; Vasil'eva TA; Gagloev BV; Shipunov AA; Zinchenko RA Vestn Oftalmol; 2017; 133(6):30-44. PubMed ID: 29319667 [TBL] [Abstract][Full Text] [Related]
19. Comparison of human central cornea and limbus in vivo using optical coherence tomography. Feng Y; Simpson TL Optom Vis Sci; 2005 May; 82(5):416-9. PubMed ID: 15894917 [TBL] [Abstract][Full Text] [Related]
20. In vivo confocal microscopy and optical coherence tomography as innovative tools for the diagnosis of limbal stem cell deficiency. Banayan N; Georgeon C; Grieve K; Ghoubay D; Baudouin F; Borderie V J Fr Ophtalmol; 2018 Nov; 41(9):e395-e406. PubMed ID: 30458924 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]