These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 27645310)
21. A comparison of the thermal properties of 2- and 3-fluted drills and the effects on bone cell viability and screw pull-out strength in an ovine model. Bertollo N; Milne HR; Ellis LP; Stephens PC; Gillies RM; Walsh WR Clin Biomech (Bristol, Avon); 2010 Jul; 25(6):613-7. PubMed ID: 20359798 [TBL] [Abstract][Full Text] [Related]
22. Drilling of bone: Effect of drill bit geometries on thermal osteonecrosis risk regions. Ali Akhbar MF; Yusoff AR Proc Inst Mech Eng H; 2019 Feb; 233(2):207-218. PubMed ID: 30572787 [TBL] [Abstract][Full Text] [Related]
23. Effects of a drill diameter on the temperature rise in a bone during implant site preparation under clinical conditions. Bogovič V; Svete A; Bajsić I Proc Inst Mech Eng H; 2016 Oct; 230(10):907-17. PubMed ID: 27459501 [TBL] [Abstract][Full Text] [Related]
24. Thermal changes and drill wear in bovine bone during implant site preparation. A comparative in vitro study: twisted stainless steel and ceramic drills. Oliveira N; Alaejos-Algarra F; Mareque-Bueno J; Ferrés-Padró E; Hernández-Alfaro F Clin Oral Implants Res; 2012 Aug; 23(8):963-9. PubMed ID: 21806686 [TBL] [Abstract][Full Text] [Related]
25. Assessment of experimental thermal, numerical, and mandibular drilling factors in implantology. Pirjamalineisiani A; Jamshidi N; Sarafbidabad M; Soltani N Br J Oral Maxillofac Surg; 2016 May; 54(4):400-4. PubMed ID: 26493617 [TBL] [Abstract][Full Text] [Related]
26. Development of a Drilling Simulator for Dental Implant Surgery. Kinoshita H; Nagahata M; Takano N; Takemoto S; Matsunaga S; Abe S; Yoshinari M; Kawada E J Dent Educ; 2016 Jan; 80(1):83-90. PubMed ID: 26729688 [TBL] [Abstract][Full Text] [Related]
27. Comparison of conventional twist drill protocol and piezosurgery for implant insertion: an ex vivo study on different bone types. Sagheb K; Kumar VV; Azaripour A; Walter C; Al-Nawas B; Kämmerer PW Clin Oral Implants Res; 2017 Feb; 28(2):207-213. PubMed ID: 26799448 [TBL] [Abstract][Full Text] [Related]
28. Effects of repeated drill use on temperature of bone during preparation for osteosynthesis self-tapping screws. Allan W; Williams ED; Kerawala CJ Br J Oral Maxillofac Surg; 2005 Aug; 43(4):314-9. PubMed ID: 15949876 [TBL] [Abstract][Full Text] [Related]
29. Novel hybrid drilling protocol: evaluation for the implant healing--thermal changes, crestal bone loss, and bone-to-implant contact. Calvo-Guirado JL; Delgado-Peña J; Maté-Sánchez JE; Mareque Bueno J; Delgado-Ruiz RA; Romanos GE Clin Oral Implants Res; 2015 Jul; 26(7):753-60. PubMed ID: 24502654 [TBL] [Abstract][Full Text] [Related]
30. Drilling- and withdrawing-related thermal changes during implant site osteotomies. Strbac GD; Giannis K; Unger E; Mittlböck M; Vasak C; Watzek G; Zechner W Clin Implant Dent Relat Res; 2015 Feb; 17(1):32-43. PubMed ID: 23714272 [TBL] [Abstract][Full Text] [Related]
31. Effects of rotary ultrasonic bone drilling on cutting force and temperature in the human bones. Singh RP; Pandey PM; Behera C; Mridha AR Proc Inst Mech Eng H; 2020 Aug; 234(8):829-842. PubMed ID: 32490719 [TBL] [Abstract][Full Text] [Related]
32. The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability. Ercoli C; Funkenbusch PD; Lee HJ; Moss ME; Graser GN Int J Oral Maxillofac Implants; 2004; 19(3):335-49. PubMed ID: 15214217 [TBL] [Abstract][Full Text] [Related]
33. An analytical and numerical approach to the determination of thermal necrosis in cortical bone drilling. Aydın K; Ökten K; Uğur L Int J Numer Method Biomed Eng; 2022 Oct; 38(10):e3640. PubMed ID: 35899364 [TBL] [Abstract][Full Text] [Related]
34. Temperature changes during cortical bone drilling with a newly designed step drill and an internally cooled drill. Augustin G; Davila S; Udilljak T; Staroveski T; Brezak D; Babic S Int Orthop; 2012 Jul; 36(7):1449-56. PubMed ID: 22290154 [TBL] [Abstract][Full Text] [Related]
35. Semiautomatic device for in vitro/ experimental bone perforation in dental implant research. Antônio da Costa Borges M; Margonar R; Spinelli MA; Gomes Cavalcanti IM; Pimentel Lopes de Oliveira GJ; Queiroz TP J Craniomaxillofac Surg; 2019 Jun; 47(6):991-995. PubMed ID: 30914230 [TBL] [Abstract][Full Text] [Related]
36. Optimization of drilling parameters for thermal bone necrosis prevention. Akhbar MFA; Yusoff AR Technol Health Care; 2018; 26(4):621-635. PubMed ID: 29966212 [TBL] [Abstract][Full Text] [Related]
37. Influence of Multiple Used Implant Drills on Their Cutting Performance and Fracture Resistance. Alevizakos V; Mosch R; von See C Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569975 [TBL] [Abstract][Full Text] [Related]
38. Improved Dental Implant Drill Durability and Performance Using Heat and Wear Resistant Protective Coatings. Er N; Alkan A; Ilday S; Bengu E J Oral Implantol; 2018 Jun; 44(3):168-175. PubMed ID: 29498904 [TBL] [Abstract][Full Text] [Related]
39. An experimental comparative study of drilling efficiency and temperature elevation with unmodified and modified medical drills in pig tibia bone. Enokida M; Kanaya H; Uehara K; Ueki M; Nagashima H Heliyon; 2019 Aug; 5(8):e02189. PubMed ID: 31417971 [TBL] [Abstract][Full Text] [Related]
40. Modelling and optimization of temperature in orthopaedic drilling: an in vitro study. Pandey RK; Panda SS Acta Bioeng Biomech; 2014; 16(1):107-16. PubMed ID: 24707883 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]