These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27645529)

  • 1. Assessment of Hydration Thermodynamics at Protein Interfaces with Grid Cell Theory.
    Gerogiokas G; Southey MW; Mazanetz MP; Heifetz A; Bodkin M; Law RJ; Henchman RH; Michel J
    J Phys Chem B; 2016 Oct; 120(40):10442-10452. PubMed ID: 27645529
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Small Molecule Hydration Thermodynamics with Grid Cell Theory.
    Gerogiokas G; Calabro G; Henchman RH; Southey MW; Law RJ; Michel J
    J Chem Theory Comput; 2014 Jan; 10(1):35-48. PubMed ID: 26579889
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of hydration to protein folding thermodynamics. I. The enthalpy of hydration.
    Makhatadze GI; Privalov PL
    J Mol Biol; 1993 Jul; 232(2):639-59. PubMed ID: 8393940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enthalpic Breakdown of Water Structure on Protein Active-Site Surfaces.
    Haider K; Wickstrom L; Ramsey S; Gilson MK; Kurtzman T
    J Phys Chem B; 2016 Sep; 120(34):8743-56. PubMed ID: 27169482
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.
    Güssregen S; Matter H; Hessler G; Lionta E; Heil J; Kast SM
    J Chem Inf Model; 2017 Jul; 57(7):1652-1666. PubMed ID: 28565907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization.
    Beuming T; Che Y; Abel R; Kim B; Shanmugasundaram V; Sherman W
    Proteins; 2012 Mar; 80(3):871-83. PubMed ID: 22223256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A "solvated rotamer" approach to modeling water-mediated hydrogen bonds at protein-protein interfaces.
    Jiang L; Kuhlman B; Kortemme T; Baker D
    Proteins; 2005 Mar; 58(4):893-904. PubMed ID: 15651050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of water displacement energetics in protein binding sites with grid cell theory.
    Gerogiokas G; Southey MW; Mazanetz MP; Heifetz A; Bodkin M; Law RJ; Michel J
    Phys Chem Chem Phys; 2015 Apr; 17(13):8416-26. PubMed ID: 25600031
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydration of globular proteins as derived from volume and compressibility measurements: cross correlating thermodynamic and structural data.
    Chalikian TV; Totrov M; Abagyan R; Breslauer KJ
    J Mol Biol; 1996 Jul; 260(4):588-603. PubMed ID: 8759322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of specific cations and water entropy on the stability of branched DNA motif structures.
    Pascal TA; Goddard WA; Maiti PK; Vaidehi N
    J Phys Chem B; 2012 Oct; 116(40):12159-67. PubMed ID: 22998030
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissecting the Influence of Protein Flexibility on the Location and Thermodynamic Profile of Explicit Water Molecules in Protein-Ligand Binding.
    Yang Y; Lill MA
    J Chem Theory Comput; 2016 Sep; 12(9):4578-92. PubMed ID: 27494046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The importance of hydration thermodynamics in fragment-to-lead optimization.
    Ichihara O; Shimada Y; Yoshidome D
    ChemMedChem; 2014 Dec; 9(12):2708-17. PubMed ID: 25164952
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics of interfacial changes in a protein-protein complex.
    Das A; Chakrabarti J; Ghosh M
    Mol Biosyst; 2014 Mar; 10(3):437-45. PubMed ID: 24336889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of Hydration Water Plays a Key Role in Determining the Binding Thermodynamics of Protein Complexes.
    Chong SH; Ham S
    Sci Rep; 2017 Aug; 7(1):8744. PubMed ID: 28821854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating Free Energies of Binding and Conservation of Crystallographic Waters Using SZMAP.
    Bayden AS; Moustakas DT; Joseph-McCarthy D; Lamb ML
    J Chem Inf Model; 2015 Aug; 55(8):1552-65. PubMed ID: 26176600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of Water Binding to Protein Hydration Sites with a Discrete, Semiexplicit Solvent Model.
    Setny P
    J Chem Theory Comput; 2015 Dec; 11(12):5961-72. PubMed ID: 26642995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial analysis and quantification of the thermodynamic driving forces in protein-ligand binding: binding site variability.
    Raman EP; MacKerell AD
    J Am Chem Soc; 2015 Feb; 137(7):2608-21. PubMed ID: 25625202
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation theory to provide a molecular interpretation of the hydrophobic entropy loss of noble-gas hydration.
    Irudayam SJ; Henchman RH
    J Phys Condens Matter; 2010 Jul; 22(28):284108. PubMed ID: 21399280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.