These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 2764564)

  • 21. Development of a Ct equation taking into consideration the effect of lot variability on the inactivation of Cryptosporidium parvum oocysts with ozone.
    Sivaganesan M; Mariñas BJ
    Water Res; 2005 Jun; 39(11):2429-37. PubMed ID: 15963550
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a Ct equation for the inactivation of Cryptosporidium oocysts with ozone.
    Clark RM; Sivagenesan M; Rice EW; Chen J
    Water Res; 2002 Jul; 36(12):3141-9. PubMed ID: 12171413
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pilot-Scale Pulsed UV Light Irradiation of Experimentally Infected Raspberries Suppresses Cryptosporidium parvum Infectivity in Immunocompetent Suckling Mice.
    Le Goff L; Hubert B; Favennec L; Villena I; Ballet JJ; Agoulon A; Orange N; Gargala G
    J Food Prot; 2015 Dec; 78(12):2247-52. PubMed ID: 26613921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Cryptosporidium parvum viability and infectivity assays following ozone treatment of oocysts.
    Bukhari Z; Marshall MM; Korich DG; Fricker CR; Smith HV; Rosen J; Clancy JL
    Appl Environ Microbiol; 2000 Jul; 66(7):2972-80. PubMed ID: 10877794
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine.
    Venczel LV; Arrowood M; Hurd M; Sobsey MD
    Appl Environ Microbiol; 1997 Apr; 63(4):1598-601. PubMed ID: 9097455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inactivation of Cryptosporidium parvum oocysts with sequential application of ozone and combined chlorine.
    Rennecker JL; Corona-Vasquez B; Driedger AM; Rubin SA; Mariñas BJ
    Water Sci Technol; 2001; 43(12):167-70. PubMed ID: 11464747
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A non-biological surrogate for sequential disinfection processes.
    Baeza C; Ducoste J
    Water Res; 2004; 38(14-15):3400-10. PubMed ID: 15276757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Batch solar disinfection inactivates oocysts of Cryptosporidium parvum and cysts of Giardia muris in drinking water.
    McGuigan KG; Méndez-Hermida F; Castro-Hermida JA; Ares-Mazás E; Kehoe SC; Boyle M; Sichel C; Fernández-Ibáñez P; Meyer BP; Ramalingham S; Meyer EA
    J Appl Microbiol; 2006 Aug; 101(2):453-63. PubMed ID: 16882154
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synergistic inactivation of Cryptosporidium parvum using ozone followed by monochloramine in two natural waters.
    Biswas K; Craik S; Smith DW; Belosevic M
    Water Res; 2005 Sep; 39(14):3167-76. PubMed ID: 16000207
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficacy of a pentaiodide resin disinfectant on Cryptosporidium parvum (Apicomplexa: Cryptosporidiidae) oocysts in vitro.
    Upton SJ; Tilley ME; Marchin GL; Fina LR
    J Parasitol; 1988 Aug; 74(4):719-21. PubMed ID: 3397833
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inactivation of Cryptosporidium parvum by ultrasonic irradiation.
    Oyane I; Furuta M; Stavarache CE; Hashiba K; Mukai S; Nakanishi JM; Kimata I; Maeda Y
    Environ Sci Technol; 2005 Sep; 39(18):7294-8. PubMed ID: 16201661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An immunomagnetic separation-reverse transcription polymerase chain reaction (IMS-RT-PCR) test for sensitive and rapid detection of viable waterborne Cryptosporidium parvum.
    Hallier-Soulier S; Guillot E
    Environ Microbiol; 2003 Jul; 5(7):592-8. PubMed ID: 12823191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of water treatment processes on Cryptosporidium infectivity.
    Keegan A; Daminato D; Saint CP; Monis PT
    Water Res; 2008 Mar; 42(6-7):1805-11. PubMed ID: 18067945
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uncertainty in prediction of disinfection performance.
    Neumann MB; von Gunten U; Gujer W
    Water Res; 2007 Jun; 41(11):2371-8. PubMed ID: 17433404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Indigenous bacterial spores as indicators of Cryptosporidium inactivation using chlorine dioxide.
    Verhille S; Hofmann R; Chauret C; Andrews R
    J Water Health; 2003 Jun; 1(2):91-100. PubMed ID: 15382738
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Potential molecular tools for assessing the public health risk associated with waterborne Cryptosporidium oocysts.
    Kothavade RJ
    J Med Microbiol; 2012 Aug; 61(Pt 8):1039-1051. PubMed ID: 22628454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Drinking water treatment processes for removal of Cryptosporidium and Giardia.
    Betancourt WQ; Rose JB
    Vet Parasitol; 2004 Dec; 126(1-2):219-34. PubMed ID: 15567586
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infectivity of Cryptosporidium sp isolated from wild mice for calves and mice.
    Klesius PH; Haynes TB; Malo LK
    J Am Vet Med Assoc; 1986 Jul; 189(2):192-3. PubMed ID: 3744976
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pilot-scale ozone inactivation of Cryptosporidium.
    Owens JH; Miltner RJ; Schaefer FW; Rice EW
    J Eukaryot Microbiol; 1994; 41(5):56S-57S. PubMed ID: 7804257
    [No Abstract]   [Full Text] [Related]  

  • 40. Efficacy of two peroxygen-based disinfectants for inactivation of Cryptosporidium parvum oocysts.
    Quilez J; Sanchez-Acedo C; Avendaño C; del Cacho E; Lopez-Bernad F
    Appl Environ Microbiol; 2005 May; 71(5):2479-83. PubMed ID: 15870337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.