These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 27646286)

  • 41. The SAMPL5 host-guest challenge: computing binding free energies and enthalpies from explicit solvent simulations by the attach-pull-release (APR) method.
    Yin J; Henriksen NM; Slochower DR; Gilson MK
    J Comput Aided Mol Des; 2017 Jan; 31(1):133-145. PubMed ID: 27638809
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Predicting octanol/water partition coefficients and pKa for the SAMPL7 challenge using the SM12, SM8 and SMD solvation models.
    Rodriguez SA; Tran JV; Sabatino SJ; Paluch AS
    J Comput Aided Mol Des; 2022 Sep; 36(9):687-705. PubMed ID: 36117236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Resolving the problem of trapped water in binding cavities: prediction of host-guest binding free energies in the SAMPL5 challenge by funnel metadynamics.
    Bhakat S; Söderhjelm P
    J Comput Aided Mol Des; 2017 Jan; 31(1):119-132. PubMed ID: 27573983
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Efficient Computation of Free Energy Surfaces of Diels⁻Alder Reactions in Explicit Solvent at Ab Initio QM/MM Level.
    Li P; Liu F; Jia X; Shao Y; Hu W; Zheng J; Mei Y
    Molecules; 2018 Sep; 23(10):. PubMed ID: 30274188
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Precise force-field-based calculations of octanol-water partition coefficients for the SAMPL7 molecules.
    Fan S; Nedev H; Vijayan R; Iorga BI; Beckstein O
    J Comput Aided Mol Des; 2021 Jul; 35(7):853-870. PubMed ID: 34232435
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Binding free energies in the SAMPL5 octa-acid host-guest challenge calculated with DFT-D3 and CCSD(T).
    Caldararu O; Olsson MA; Riplinger C; Neese F; Ryde U
    J Comput Aided Mol Des; 2017 Jan; 31(1):87-106. PubMed ID: 27600554
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Multi-phase Boltzmann weighting: accounting for local inhomogeneity in molecular simulations of water-octanol partition coefficients in the SAMPL6 challenge.
    Krämer A; Hudson PS; Jones MR; Brooks BR
    J Comput Aided Mol Des; 2020 May; 34(5):471-483. PubMed ID: 32060677
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Absolute binding free energies for octa-acids and guests in SAMPL5 : Evaluating binding free energies for octa-acid and guest complexes in the SAMPL5 blind challenge.
    Tofoleanu F; Lee J; Pickard Iv FC; König G; Huang J; Baek M; Seok C; Brooks BR
    J Comput Aided Mol Des; 2017 Jan; 31(1):107-118. PubMed ID: 27696242
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Binding free energies in the SAMPL6 octa-acid host-guest challenge calculated with MM and QM methods.
    Caldararu O; Olsson MA; Misini Ignjatović M; Wang M; Ryde U
    J Comput Aided Mol Des; 2018 Oct; 32(10):1027-1046. PubMed ID: 30203229
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting small-molecule solvation free energies: an informal blind test for computational chemistry.
    Nicholls A; Mobley DL; Guthrie JP; Chodera JD; Bayly CI; Cooper MD; Pande VS
    J Med Chem; 2008 Feb; 51(4):769-79. PubMed ID: 18215013
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A "Stepping Stone" Approach for Obtaining Quantum Free Energies of Hydration.
    Sampson C; Fox T; Tautermann CS; Woods C; Skylaris CK
    J Phys Chem B; 2015 Jun; 119(23):7030-40. PubMed ID: 25985723
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In silico prediction of drug solubility: 4. Will simple potentials suffice?
    Lüder K; Lindfors L; Westergren J; Nordholm S; Persson R; Pedersen M
    J Comput Chem; 2009 Sep; 30(12):1859-71. PubMed ID: 19115279
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A QM/MM study of the binding of RAPTA ligands to cathepsin B.
    Ciancetta A; Genheden S; Ryde U
    J Comput Aided Mol Des; 2011 Aug; 25(8):729-42. PubMed ID: 21701919
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Calculation of the free energy of polarization: quantifying the effect of explicitly treating electronic polarization on the transferability of force-field parameters.
    Geerke DP; van Gunsteren WF
    J Phys Chem B; 2007 Jun; 111(23):6425-36. PubMed ID: 17508737
    [TBL] [Abstract][Full Text] [Related]  

  • 55. pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols.
    Riccardi D; Schaefer P; Cui Q
    J Phys Chem B; 2005 Sep; 109(37):17715-33. PubMed ID: 16853267
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparison of two simulation methods to compute solvation free energies and partition coefficients.
    Yang L; Ahmed A; Sandler SI
    J Comput Chem; 2013 Feb; 34(4):284-93. PubMed ID: 23109246
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Explicit solvent simulations of the aqueous oxidation potential and reorganization energy for neutral molecules: gas phase, linear solvent response, and non-linear response contributions.
    Guerard JJ; Tentscher PR; Seijo M; Samuel Arey J
    Phys Chem Chem Phys; 2015 Jun; 17(22):14811-26. PubMed ID: 25978135
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of partition and distribution coefficients in various solvent pairs with COSMO-RS.
    Tshepelevitsh S; Hernits K; Leito I
    J Comput Aided Mol Des; 2018 Jun; 32(6):711-722. PubMed ID: 29846868
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Obtaining QM/MM binding free energies in the SAMPL8 drugs of abuse challenge: indirect approaches.
    Hudson PS; Aviat F; Meana-Pañeda R; Warrensford L; Pollard BC; Prasad S; Jones MR; Woodcock HL; Brooks BR
    J Comput Aided Mol Des; 2022 Apr; 36(4):263-277. PubMed ID: 35597880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A free-energy perturbation method based on Monte Carlo simulations using quantum mechanical calculations (QM/MC/FEP method): application to highly solvent-dependent reactions.
    Hori K; Yamaguchi T; Uezu K; Sumimoto M
    J Comput Chem; 2011 Apr; 32(5):778-86. PubMed ID: 21341291
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.