These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 27646450)

  • 1. Comparative mathematical modelling of a green approach for bioaccumulation of cobalt from wastewater.
    Mateos LM; Villadangos AF; Santana LK; Pereira FJ; de la Rubia AG; Gil JA; Aller AJ
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24215-24229. PubMed ID: 27646450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption, Bioaccumulation and Kinetics Parameters of the Phytoremediation of Cobalt from Wastewater Using Elodea canadensis.
    Mosoarca G; Vancea C; Popa S; Boran S
    Bull Environ Contam Toxicol; 2018 May; 100(5):733-739. PubMed ID: 29557493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Algae as a green technology for heavy metals removal from various wastewater.
    Salama ES; Roh HS; Dev S; Khan MA; Abou-Shanab RAI; Chang SW; Jeon BH
    World J Microbiol Biotechnol; 2019 May; 35(5):75. PubMed ID: 31053951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Green fabrication of bentonite/chitosan@cobalt oxide composite (BE/CH@Co) of enhanced adsorption and advanced oxidation removal of Congo red dye and Cr (VI) from water.
    Abukhadra MR; Adlii A; Bakry BM
    Int J Biol Macromol; 2019 Apr; 126():402-413. PubMed ID: 30593802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Utilization of Algae and Seaweed Biomass for Bioremediation of Heavy Metal-Contaminated Wastewater.
    Znad H; Awual MR; Martini S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209061
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Coupling of Hydrocarbon Accumulation and Cobalt Removal During Treatment of Cobalt Enriched Industrial Wastewater with
    Cheng PF; Wang Y; Yang QY; Tang M; Liu TZ
    Huan Jing Ke Xue; 2016 Jul; 37(7):2666-2672. PubMed ID: 29964477
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of cobalt and lead ions from wastewater samples using an insoluble nanosponge biopolymer composite: adsorption isotherm, kinetic, thermodynamic, and regeneration studies.
    Taka AL; Fosso-Kankeu E; Pillay K; Mbianda XY
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):21752-21767. PubMed ID: 29790054
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid removal of cobalt ion from aqueous solutions by almond green hull.
    Ahmadpour A; Tahmasbi M; Bastami TR; Besharati JA
    J Hazard Mater; 2009 Jul; 166(2-3):925-30. PubMed ID: 19135786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metal biosorption in lignocellulosic biofuel biorefinery effluent: an initial step towards sustainability of water resources.
    Palumbo AJ; Taylor SC; Addison SL; Slade AH; Glover CN
    J Ind Microbiol Biotechnol; 2012 Sep; 39(9):1345-56. PubMed ID: 22535223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regenerable chitosan-bismuth cobalt selenide hybrid microspheres for mitigation of organic pollutants in an aqueous environment.
    Ali N; Uddin S; Khan A; Khan S; Khan S; Ali N; Khan H; Khan H; Bilal M
    Int J Biol Macromol; 2020 Oct; 161():1305-1317. PubMed ID: 32693147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review.
    Soares EV; Soares HM
    Environ Sci Pollut Res Int; 2012 May; 19(4):1066-83. PubMed ID: 22139299
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oil palm biomass as an adsorbent for heavy metals.
    Vakili M; Rafatullah M; Ibrahim MH; Abdullah AZ; Salamatinia B; Gholami Z
    Rev Environ Contam Toxicol; 2014; 232():61-88. PubMed ID: 24984835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance evaluation of two Aspergillus spp. for the decolourization of reactive dyes by bioaccumulation and biosorption.
    Mathur M; Gola D; Panja R; Malik A; Ahammad SZ
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):345-352. PubMed ID: 29039036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Remarkably high Pb
    Mukherjee A; Sarkar S; Parvin R; Bera D; Roy U; Gachhui R
    Ecotoxicol Environ Saf; 2020 Jun; 195():110439. PubMed ID: 32182528
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical modeling of simultaneous carbon-nitrogen-sulfur removal from industrial wastewater.
    Xu XJ; Chen C; Wang AJ; Ni BJ; Guo WQ; Yuan Y; Huang C; Zhou X; Wu DH; Lee DJ; Ren NQ
    J Hazard Mater; 2017 Jan; 321():371-381. PubMed ID: 27669378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing the resistance and bioremediation ability of selected bacterial and protozoan species to heavy metals in metal-rich industrial wastewater.
    Kamika I; Momba MN
    BMC Microbiol; 2013 Feb; 13():28. PubMed ID: 23387904
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of Cr, Mn, and Co from textile wastewater by horizontal rotating tubular bioreactor.
    Zeiner M; Rezić T; Santek B; Rezić I; Hann S; Stingeder G
    Environ Sci Technol; 2012 Oct; 46(19):10690-6. PubMed ID: 22934685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fungal biosorption--an alternative to meet the challenges of heavy metal pollution in aqueous solutions.
    Dhankhar R; Hooda A
    Environ Technol; 2011 Apr; 32(5-6):467-91. PubMed ID: 21877528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremoval of Reactive Blue 220 by Gonium sp. biomass.
    Boduroğlu G; Kiliç NK; Dönmez G
    Environ Technol; 2014; 35(17-20):2410-5. PubMed ID: 25145195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose-magnesium hydroxide.
    Wang R; Deng L; Fan X; Li K; Lu H; Li W
    Int J Biol Macromol; 2021 Oct; 189():607-617. PubMed ID: 34450150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.