BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27646506)

  • 1. Progressive gene dose-dependent disruption of the methamphetamine-sensitive circadian oscillator-driven rhythms in a knock-in mouse model of Huntington's disease.
    Ouk K; Aungier J; Morton AJ
    Exp Neurol; 2016 Dec; 286():69-82. PubMed ID: 27646506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chronic paroxetine treatment prevents disruption of methamphetamine-sensitive circadian oscillator in a transgenic mouse model of Huntington's disease.
    Ouk K; Aungier J; Cuesta M; Morton AJ
    Neuropharmacology; 2018 Mar; 131():337-350. PubMed ID: 29274752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The methamphetamine-sensitive circadian oscillator is dysfunctional in a transgenic mouse model of Huntington's disease.
    Cuesta M; Aungier J; Morton AJ
    Neurobiol Dis; 2012 Jan; 45(1):145-55. PubMed ID: 21820053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The complex relationship between the light-entrainable and methamphetamine-sensitive circadian oscillators: evidence from behavioral studies of Period-mutant mice.
    Pendergast JS; Niswender KD; Yamazaki S
    Eur J Neurosci; 2013 Oct; 38(7):3044-53. PubMed ID: 23869717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The methamphetamine-sensitive circadian oscillator (MASCO) in mice.
    Tataroglu O; Davidson AJ; Benvenuto LJ; Menaker M
    J Biol Rhythms; 2006 Jun; 21(3):185-94. PubMed ID: 16731658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of light, food, and methamphetamine on the circadian activity rhythm in mice.
    Pendergast JS; Yamazaki S
    Physiol Behav; 2014 Apr; 128():92-8. PubMed ID: 24530262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian dysfunction in the Q175 model of Huntington's disease: Network analysis.
    Smarr B; Cutler T; Loh DH; Kudo T; Kuljis D; Kriegsfeld L; Ghiani CA; Colwell CS
    J Neurosci Res; 2019 Dec; 97(12):1606-1623. PubMed ID: 31359503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Q175 mouse model of Huntington's disease shows gene dosage- and age-related decline in circadian rhythms of activity and sleep.
    Loh DH; Kudo T; Truong D; Wu Y; Colwell CS
    PLoS One; 2013; 8(7):e69993. PubMed ID: 23936129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetics and functional significance of the understudied methamphetamine sensitive circadian oscillator (MASCO).
    Taufique SKT; Ehichioya DE; Pendergast JS; Yamazaki S
    F1000Res; 2022; 11():1018. PubMed ID: 36226037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Behavioral therapy reverses circadian deficits in a transgenic mouse model of Huntington's disease.
    Cuesta M; Aungier J; Morton AJ
    Neurobiol Dis; 2014 Mar; 63():85-91. PubMed ID: 24269914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurocardiovascular deficits in the Q175 mouse model of Huntington's disease.
    Cutler TS; Park S; Loh DH; Jordan MC; Yokota T; Roos KP; Ghiani CA; Colwell CS
    Physiol Rep; 2017 Jun; 5(11):. PubMed ID: 28576852
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-Restricted Feeding Improves Circadian Dysfunction as well as Motor Symptoms in the Q175 Mouse Model of Huntington's Disease.
    Wang HB; Loh DH; Whittaker DS; Cutler T; Howland D; Colwell CS
    eNeuro; 2018; 5(1):. PubMed ID: 29302618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degeneration of ipRGCs in Mouse Models of Huntington's Disease Disrupts Non-Image-Forming Behaviors Before Motor Impairment.
    Lin MS; Liao PY; Chen HM; Chang CP; Chen SK; Chern Y
    J Neurosci; 2019 Feb; 39(8):1505-1524. PubMed ID: 30587542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Longitudinal analysis of the electroencephalogram and sleep phenotype in the R6/2 mouse model of Huntington's disease.
    Fisher SP; Black SW; Schwartz MD; Wilk AJ; Chen TM; Lincoln WU; Liu HW; Kilduff TS; Morairty SR
    Brain; 2013 Jul; 136(Pt 7):2159-72. PubMed ID: 23801738
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of dopamine in motor symptoms in the R6/2 transgenic mouse model of Huntington's disease.
    Hickey MA; Reynolds GP; Morton AJ
    J Neurochem; 2002 Apr; 81(1):46-59. PubMed ID: 12067237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative Electroencephalographic Analysis Provides an Early-Stage Indicator of Disease Onset and Progression in the zQ175 Knock-In Mouse Model of Huntington's Disease.
    Fisher SP; Schwartz MD; Wurts-Black S; Thomas AM; Chen TM; Miller MA; Palmerston JB; Kilduff TS; Morairty SR
    Sleep; 2016 Feb; 39(2):379-91. PubMed ID: 26446107
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The methamphetamine-sensitive circadian oscillator does not employ canonical clock genes.
    Mohawk JA; Baer ML; Menaker M
    Proc Natl Acad Sci U S A; 2009 Mar; 106(9):3519-24. PubMed ID: 19204282
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Period determination in the food-entrainable and methamphetamine-sensitive circadian oscillator(s).
    Pendergast JS; Oda GA; Niswender KD; Yamazaki S
    Proc Natl Acad Sci U S A; 2012 Aug; 109(35):14218-23. PubMed ID: 22891330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early GABAergic transmission defects in the external globus pallidus and rest/activity rhythm alteration in a mouse model of Huntington's disease.
    Du Z; Chazalon M; Bestaven E; Leste-Lasserre T; Baufreton J; Cazalets JR; Cho YH; Garret M
    Neuroscience; 2016 Aug; 329():363-79. PubMed ID: 27217211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corticosterone dysregulation exacerbates disease progression in the R6/2 transgenic mouse model of Huntington's disease.
    Dufour BD; McBride JL
    Exp Neurol; 2016 Sep; 283(Pt A):308-17. PubMed ID: 27381424
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.