These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
305 related articles for article (PubMed ID: 27647008)
1. Climate Change and Integrodifference Equations in a Stochastic Environment. Bouhours J; Lewis MA Bull Math Biol; 2016 Sep; 78(9):1866-1903. PubMed ID: 27647008 [TBL] [Abstract][Full Text] [Related]
2. Integrodifference equations in the presence of climate change: persistence criterion, travelling waves and inside dynamics. Lewis MA; Marculis NG; Shen Z J Math Biol; 2018 Dec; 77(6-7):1649-1687. PubMed ID: 29332297 [TBL] [Abstract][Full Text] [Related]
3. Bounds for the critical speed of climate-driven moving-habitat models. Kot M; Phillips A Math Biosci; 2015 Apr; 262():65-72. PubMed ID: 25645183 [TBL] [Abstract][Full Text] [Related]
4. Persistence in a Two-Dimensional Moving-Habitat Model. Phillips A; Kot M Bull Math Biol; 2015 Nov; 77(11):2125-59. PubMed ID: 26582361 [TBL] [Abstract][Full Text] [Related]
5. Range Shifts Under Constant-Speed and Accelerated Climate Warming. Zhou Y Bull Math Biol; 2021 Nov; 84(1):1. PubMed ID: 34787723 [TBL] [Abstract][Full Text] [Related]
6. Should I Stay or Should I Go: Partially Sedentary Populations Can Outperform Fully Dispersing Populations in Response to Climate-Induced Range Shifts. Cobbold CA; Stana R Bull Math Biol; 2020 Jan; 82(2):26. PubMed ID: 32006139 [TBL] [Abstract][Full Text] [Related]
7. Integrodifference models for persistence in temporally varying river environments. Jacobsen J; Jin Y; Lewis MA J Math Biol; 2015 Feb; 70(3):549-90. PubMed ID: 24627231 [TBL] [Abstract][Full Text] [Related]
8. Spreading Speed in an Integrodifference Predator-Prey System without Comparison Principle. Lin G; Niu Y; Pan S; Ruan S Bull Math Biol; 2020 Apr; 82(5):53. PubMed ID: 32314098 [TBL] [Abstract][Full Text] [Related]
9. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features. Fernández-Chacón A; Stefanescu C; Genovart M; Nichols JD; Hines JE; Páramo F; Turco M; Oro D J Anim Ecol; 2014 Jan; 83(1):276-85. PubMed ID: 23957287 [TBL] [Abstract][Full Text] [Related]
10. Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat. Li B; Bewick S; Barnard MR; Fagan WF Bull Math Biol; 2016 Jul; 78(7):1337-79. PubMed ID: 27417986 [TBL] [Abstract][Full Text] [Related]
11. Individual behavior at habitat edges may help populations persist in moving habitats. MacDonald JS; Lutscher F J Math Biol; 2018 Dec; 77(6-7):2049-2077. PubMed ID: 29737397 [TBL] [Abstract][Full Text] [Related]
12. A discrete-time model for population persistence in habitats with time-varying sizes. Zhou Y; Fagan WF J Math Biol; 2017 Sep; 75(3):649-704. PubMed ID: 28101632 [TBL] [Abstract][Full Text] [Related]
13. Population dynamics under climate change: persistence criterion and effects of fluctuations. Shen W; Shen Z; Xue S; Zhou D J Math Biol; 2022 Mar; 84(4):30. PubMed ID: 35274161 [TBL] [Abstract][Full Text] [Related]
14. Species persistence decreases with habitat fragmentation: an analysis in periodic stochastic environments. Roques L; Stoica RS J Math Biol; 2007 Aug; 55(2):189-205. PubMed ID: 17294236 [TBL] [Abstract][Full Text] [Related]
15. Approximating the Critical Domain Size of Integrodifference Equations. Reimer JR; Bonsall MB; Maini PK Bull Math Biol; 2016 Jan; 78(1):72-109. PubMed ID: 26721746 [TBL] [Abstract][Full Text] [Related]
16. Moving-habitat models: A numerical approach. MacDonald JS; Bourgault Y; Lutscher F Math Biosci; 2021 Nov; 341():108711. PubMed ID: 34547364 [TBL] [Abstract][Full Text] [Related]
17. Integrodifference equations in patchy landscapes : II: population level consequences. Musgrave J; Lutscher F J Math Biol; 2014 Sep; 69(3):617-58. PubMed ID: 23912747 [TBL] [Abstract][Full Text] [Related]
18. Spread and persistence for integro-difference equations with shifting habitat and strong Allee effect. Li B; Otto G J Math Biol; 2024 Mar; 88(3):35. PubMed ID: 38427042 [TBL] [Abstract][Full Text] [Related]
19. Predicting the effects of climate change on population connectivity and genetic diversity of an imperiled freshwater mussel, Cumberlandia monodonta (Bivalvia: Margaritiferidae), in riverine systems. Inoue K; Berg DJ Glob Chang Biol; 2017 Jan; 23(1):94-107. PubMed ID: 27225328 [TBL] [Abstract][Full Text] [Related]
20. Climate-driven range shifts reduce persistence of competitors in a perennial plant community. Usinowicz J; Levine JM Glob Chang Biol; 2021 May; 27(9):1890-1903. PubMed ID: 33432781 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]