These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27647236)

  • 1. Modulation of oxidative responses by a virulent isolate of Colletotrichum fructicola in apple leaves.
    Velho AC; Rockenbach MF; Mondino P; Stadnik MJ
    Fungal Biol; 2016 Oct; 120(10):1184-93. PubMed ID: 27647236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New insights into the characterization of Colletotrichum species associated with apple diseases in southern Brazil and Uruguay.
    Velho AC; Alaniz S; Casanova L; Mondino P; Stadnik MJ
    Fungal Biol; 2015 Apr; 119(4):229-44. PubMed ID: 25813510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription Factor CfSte12 of Colletotrichum fructicola Is a Key Regulator of Early Apple Glomerella Leaf Spot Pathogenesis.
    Liu W; Liang X; Gleason ML; Cao M; Zhang R; Sun G
    Appl Environ Microbiol; 2020 Dec; 87(1):. PubMed ID: 33067192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extracellular enzymes of
    Velho AC; Mondino P; Stadnik MJ
    Mycology; 2018; 9(2):145-154. PubMed ID: 30123670
    [No Abstract]   [Full Text] [Related]  

  • 5. Genetic Structure of Colletotrichum fructicola Associated to Apple Bitter Rot and Glomerella Leaf Spot in Southern Brazil and Uruguay.
    Rockenbach MF; Velho AC; Gonçalves AE; Mondino PE; Alaniz SM; Stadnik MJ
    Phytopathology; 2016 Jul; 106(7):774-81. PubMed ID: 27019063
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative transcriptome analysis reveals significant differences in gene expression between pathogens of apple Glomerella leaf spot and apple bitter rot.
    Jiang B; Cai T; Yang X; Dai Y; Yu K; Zhang P; Li P; Wang C; Liu N; Li B; Lian S
    BMC Genomics; 2022 Mar; 23(1):246. PubMed ID: 35354401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Salicylic acid confers enhanced resistance to Glomerella leaf spot in apple.
    Zhang Y; Shi X; Li B; Zhang Q; Liang W; Wang C
    Plant Physiol Biochem; 2016 Sep; 106():64-72. PubMed ID: 27139585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The HD-Zip I transcription factor MdHB-7 negatively regulates resistance to Glomerella leaf spot in apple.
    Liu Y; Yang L; Ma Y; Zhou Y; Zhang S; Liu Q; Ma F; Liu C
    J Plant Physiol; 2024 Aug; 299():154277. PubMed ID: 38843655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MKK4-MPK3-WRKY17-mediated salicylic acid degradation increases susceptibility to Glomerella leaf spot in apple.
    Shan D; Wang C; Zheng X; Hu Z; Zhu Y; Zhao Y; Jiang A; Zhang H; Shi K; Bai Y; Yan T; Wang L; Sun Y; Li J; Zhou Z; Guo Y; Kong J
    Plant Physiol; 2021 Jun; 186(2):1202-1219. PubMed ID: 33693824
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The MdVQ37-MdWRKY100 complex regulates salicylic acid content and MdRPM1 expression to modulate resistance to Glomerella leaf spot in apples.
    Dong Q; Duan D; Wang F; Yang K; Song Y; Wang Y; Wang D; Ji Z; Xu C; Jia P; Luan H; Guo S; Qi G; Mao K; Zhang X; Tian Y; Ma Y; Ma F
    Plant Biotechnol J; 2024 Aug; 22(8):2364-2376. PubMed ID: 38683692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase.
    Shang S; Wang B; Zhang S; Liu G; Liang X; Zhang R; Gleason ML; Sun G
    Mol Plant Pathol; 2020 Jul; 21(7):936-950. PubMed ID: 32512647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic analysis reveals candidate genes regulating development and host interactions of Colletotrichum fructicola.
    Liang X; Shang S; Dong Q; Wang B; Zhang R; Gleason ML; Sun G
    BMC Genomics; 2018 Jul; 19(1):557. PubMed ID: 30055574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reclassification of the Main Causal Agent of Glomerella Leaf Spot on Apple into
    Astolfi P; Velho AC; Moreira V; Mondino PE; Alaniz SM; Stadnik MJ
    Phytopathology; 2022 Sep; 112(9):1825-1832. PubMed ID: 35322713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diversity of
    Chen Y; Fu D; Wang W; Gleason ML; Zhang R; Liang X; Sun G
    J Fungi (Basel); 2022 Jul; 8(7):. PubMed ID: 35887495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ABC protein CgABCF2 is required for asexual and sexual development, appressorial formation and plant infection in Colletotrichum gloeosporioides.
    Zhou Z; Wu J; Wang M; Zhang J
    Microb Pathog; 2017 Sep; 110():85-92. PubMed ID: 28645773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ascospore Infection and
    Alaniz S; Cuozzo V; Martínez V; Stadnik MJ; Mondino P
    Plant Pathol J; 2019 Apr; 35(2):100-111. PubMed ID: 31007640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Colletotrichum acutatum and C. gloeosporioides Species Complexes Associated with Apple in Brazil.
    Moreira RR; Peres NA; May De Mio LL
    Plant Dis; 2019 Feb; 103(2):268-275. PubMed ID: 30484753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epidemiological Relevance of
    Castellar C; Petermann D; May De Mio LL
    Plant Dis; 2023 Nov; 107(11):3403-3413. PubMed ID: 37208821
    [No Abstract]   [Full Text] [Related]  

  • 19. Genome comparisons reveal accessory genes crucial for the evolution of apple Glomerella leaf spot pathogenicity in Colletotrichum fungi.
    Liang X; Yu W; Meng Y; Shang S; Tian H; Zhang Z; Rollins JA; Zhang R; Sun G
    Mol Plant Pathol; 2024 Apr; 25(4):e13454. PubMed ID: 38619507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A TIR-NBS-LRR Gene
    Lv L; Liu Y; Bai S; Turakulov KS; Dong C; Zhang Y
    Int J Mol Sci; 2022 Jun; 23(11):. PubMed ID: 35683002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.