These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells. Shafiee A; Soleimani M; Chamheidari GA; Seyedjafari E; Dodel M; Atashi A; Gheisari Y J Biomed Mater Res A; 2011 Dec; 99(3):467-78. PubMed ID: 21887742 [TBL] [Abstract][Full Text] [Related]
43. Scaffolds from block polyurethanes based on poly(ɛ-caprolactone) (PCL) and poly(ethylene glycol) (PEG) for peripheral nerve regeneration. Niu Y; Chen KC; He T; Yu W; Huang S; Xu K Biomaterials; 2014 May; 35(14):4266-77. PubMed ID: 24582378 [TBL] [Abstract][Full Text] [Related]
44. 3D-Printed Poly(ε-caprolactone) Scaffold Augmented With Mesenchymal Stem Cells for Total Meniscal Substitution: A 12- and 24-Week Animal Study in a Rabbit Model. Zhang ZZ; Wang SJ; Zhang JY; Jiang WB; Huang AB; Qi YS; Ding JX; Chen XS; Jiang D; Yu JK Am J Sports Med; 2017 Jun; 45(7):1497-1511. PubMed ID: 28278383 [TBL] [Abstract][Full Text] [Related]
45. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301 [TBL] [Abstract][Full Text] [Related]
46. The effect of 3D nanofibrous scaffolds on the chondrogenesis of induced pluripotent stem cells and their application in restoration of cartilage defects. Liu J; Nie H; Xu Z; Niu X; Guo S; Yin J; Guo F; Li G; Wang Y; Zhang C PLoS One; 2014; 9(11):e111566. PubMed ID: 25389965 [TBL] [Abstract][Full Text] [Related]
47. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects. Qi X; Huang Y; Han D; Zhang J; Cao J; Jin X; Huang J; Li X; Wang T Biomed Mater; 2016 Mar; 11(2):025005. PubMed ID: 26964015 [TBL] [Abstract][Full Text] [Related]
48. Selective laser sintered poly-ε-caprolactone scaffold hybridized with collagen hydrogel for cartilage tissue engineering. Chen CH; Shyu VB; Chen JP; Lee MY Biofabrication; 2014 Mar; 6(1):015004. PubMed ID: 24429581 [TBL] [Abstract][Full Text] [Related]
49. [Effect of polycaprolactone-ascobic acid scaffold in repairing articular cartilage defects in rabbits]. Huang ZH; Song B; Chen YF; Liao ZT; Zhao L Nan Fang Yi Ke Da Xue Xue Bao; 2017 May; 37(5):607-613. PubMed ID: 28539282 [TBL] [Abstract][Full Text] [Related]
50. A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment. Vaikkath D; Anitha R; Sumathy B; Nair PD Colloids Surf B Biointerfaces; 2016 May; 141():112-119. PubMed ID: 26848946 [TBL] [Abstract][Full Text] [Related]
51. Synergistic effects on mesenchymal stem cell-based cartilage regeneration by chondrogenic preconditioning and mechanical stimulation. Lin S; Lee WYW; Feng Q; Xu L; Wang B; Man GCW; Chen Y; Jiang X; Bian L; Cui L; Wei B; Li G Stem Cell Res Ther; 2017 Oct; 8(1):221. PubMed ID: 28974254 [TBL] [Abstract][Full Text] [Related]
52. Biofunctionalized chondrogenic shape-memory ternary scaffolds for efficient cell-free cartilage regeneration. Xuan H; Hu H; Geng C; Song J; Shen Y; Lei D; Guan Q; Zhao S; You Z Acta Biomater; 2020 Mar; 105():97-110. PubMed ID: 31953195 [TBL] [Abstract][Full Text] [Related]
53. Chitosan hydrogel/3D-printed poly(ε-caprolactone) hybrid scaffold containing synovial mesenchymal stem cells for cartilage regeneration based on tetrahedral framework nucleic acid recruitment. Li P; Fu L; Liao Z; Peng Y; Ning C; Gao C; Zhang D; Sui X; Lin Y; Liu S; Hao C; Guo Q Biomaterials; 2021 Nov; 278():121131. PubMed ID: 34543785 [TBL] [Abstract][Full Text] [Related]
54. Melt electrohydrodynamic 3D printed poly (ε-caprolactone)/polyethylene glycol/roxithromycin scaffold as a potential anti-infective implant in bone repair. Bai J; Wang H; Gao W; Liang F; Wang Z; Zhou Y; Lan X; Chen X; Cai N; Huang W; Tang Y Int J Pharm; 2020 Feb; 576():118941. PubMed ID: 31881261 [TBL] [Abstract][Full Text] [Related]
55. Electrophoretic Deposition of Dexamethasone-Loaded Mesoporous Silica Nanoparticles onto Poly(L-Lactic Acid)/Poly(ε-Caprolactone) Composite Scaffold for Bone Tissue Engineering. Qiu K; Chen B; Nie W; Zhou X; Feng W; Wang W; Chen L; Mo X; Wei Y; He C ACS Appl Mater Interfaces; 2016 Feb; 8(6):4137-48. PubMed ID: 26736029 [TBL] [Abstract][Full Text] [Related]
56. Fabrication and characterization of injection molded poly (ε-caprolactone) and poly (ε-caprolactone)/hydroxyapatite scaffolds for tissue engineering. Cui Z; Nelson B; Peng Y; Li K; Pilla S; Li WJ; Turng LS; Shen C Mater Sci Eng C Mater Biol Appl; 2012 Aug; 32(6):1674-81. PubMed ID: 24364976 [TBL] [Abstract][Full Text] [Related]
57. Solid freeform fabrication and in-vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Jiang CP; Chen YY; Hsieh MF; Lee HM Biomed Microdevices; 2013 Apr; 15(2):369-79. PubMed ID: 23324877 [TBL] [Abstract][Full Text] [Related]
58. Skin regeneration stimulation: the role of PCL-platelet gel nanofibrous scaffold. Ranjbarvan P; Soleimani M; Samadi Kuchaksaraei A; Ai J; Faridi Majidi R; Verdi J Microsc Res Tech; 2017 May; 80(5):495-503. PubMed ID: 28124460 [TBL] [Abstract][Full Text] [Related]
59. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Ghasemi-Mobarakeh L; Prabhakaran MP; Morshed M; Nasr-Esfahani MH; Ramakrishna S Biomaterials; 2008 Dec; 29(34):4532-9. PubMed ID: 18757094 [TBL] [Abstract][Full Text] [Related]
60. Tissue-engineered constructs: the effect of scaffold architecture in osteochondral repair. Emans PJ; Jansen EJ; van Iersel D; Welting TJ; Woodfield TB; Bulstra SK; Riesle J; van Rhijn LW; Kuijer R J Tissue Eng Regen Med; 2013 Sep; 7(9):751-6. PubMed ID: 22438217 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]