BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 27647735)

  • 1. Four domains of Ada1 form a heterochromatin boundary through different mechanisms.
    Kamata K; Shinmyozu K; Nakayama JI; Hatashita M; Uchida H; Oki M
    Genes Cells; 2016 Oct; 21(10):1125-1136. PubMed ID: 27647735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function.
    Kamata K; Hatanaka A; Goswami G; Shinmyozu K; Nakayama J; Urano T; Hatashita M; Uchida H; Oki M
    Genes Cells; 2013 Sep; 18(9):823-37. PubMed ID: 23819448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminus and Tudor domains of Sgf29 are important for its heterochromatin boundary formation function.
    Kamata K; Goswami G; Kashio S; Urano T; Nakagawa R; Uchida H; Oki M
    J Biochem; 2014 Mar; 155(3):159-71. PubMed ID: 24307402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1.
    Kulesza CA; Van Buskirk HA; Cole MD; Reese JC; Smith MM; Engel DA
    Oncogene; 2002 Feb; 21(9):1411-22. PubMed ID: 11857084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GCN5 and ADA adaptor proteins regulate triiodothyronine/GRIP1 and SRC-1 coactivator-dependent gene activation by the human thyroid hormone receptor.
    Anafi M; Yang YF; Barlev NA; Govindan MV; Berger SL; Butt TR; Walfish PG
    Mol Endocrinol; 2000 May; 14(5):718-32. PubMed ID: 10809234
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Spt7 function in the Saccharomyces cerevisiae SAGA coactivator complex.
    Wu PY; Winston F
    Mol Cell Biol; 2002 Aug; 22(15):5367-79. PubMed ID: 12101232
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ADA1, a novel component of the ADA/GCN5 complex, has broader effects than GCN5, ADA2, or ADA3.
    Horiuchi J; Silverman N; PiƱa B; Marcus GA; Guarente L
    Mol Cell Biol; 1997 Jun; 17(6):3220-8. PubMed ID: 9154821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SAGA binds TBP via its Spt8 subunit in competition with DNA: implications for TBP recruitment.
    Sermwittayawong D; Tan S
    EMBO J; 2006 Aug; 25(16):3791-800. PubMed ID: 16888622
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SAGA-associated Sgf73p facilitates formation of the preinitiation complex assembly at the promoters either in a HAT-dependent or independent manner in vivo.
    Shukla A; Bajwa P; Bhaumik SR
    Nucleic Acids Res; 2006; 34(21):6225-32. PubMed ID: 17090597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo.
    Martinez E; Palhan VB; Tjernberg A; Lymar ES; Gamper AM; Kundu TK; Chait BT; Roeder RG
    Mol Cell Biol; 2001 Oct; 21(20):6782-95. PubMed ID: 11564863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. C-terminal processing of yeast Spt7 occurs in the absence of functional SAGA complex.
    Hoke SM; Liang G; Mutiu AI; Genereaux J; Brandl CJ
    BMC Biochem; 2007 Aug; 8():16. PubMed ID: 17686179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SAGA unveiled.
    Timmers HT; Tora L
    Trends Biochem Sci; 2005 Jan; 30(1):7-10. PubMed ID: 15653319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The S. cerevisiae SAGA complex functions in vivo as a coactivator for transcriptional activation by Gal4.
    Larschan E; Winston F
    Genes Dev; 2001 Aug; 15(15):1946-56. PubMed ID: 11485989
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SAGA is an essential in vivo target of the yeast acidic activator Gal4p.
    Bhaumik SR; Green MR
    Genes Dev; 2001 Aug; 15(15):1935-45. PubMed ID: 11485988
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The
    Geng Q; Li H; Wang D; Sheng RC; Zhu H; Klosterman SJ; Subbarao KV; Chen JY; Chen FM; Zhang DD
    Front Microbiol; 2022; 13():852571. PubMed ID: 35283850
    [No Abstract]   [Full Text] [Related]  

  • 16. Chd1 chromodomain links histone H3 methylation with SAGA- and SLIK-dependent acetylation.
    Pray-Grant MG; Daniel JA; Schieltz D; Yates JR; Grant PA
    Nature; 2005 Jan; 433(7024):434-8. PubMed ID: 15647753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interdependent recruitment of SAGA and Srb mediator by transcriptional activator Gcn4p.
    Qiu H; Hu C; Zhang F; Hwang GJ; Swanson MJ; Boonchird C; Hinnebusch AG
    Mol Cell Biol; 2005 May; 25(9):3461-74. PubMed ID: 15831453
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Independent recruitment of mediator and SAGA by the activator Met4.
    Leroy C; Cormier L; Kuras L
    Mol Cell Biol; 2006 Apr; 26(8):3149-63. PubMed ID: 16581789
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the ADE genes requires the chromatin remodeling complexes SAGA and SWI/SNF.
    Koehler RN; Rachfall N; Rolfes RJ
    Eukaryot Cell; 2007 Aug; 6(8):1474-85. PubMed ID: 17573544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The proteasome regulatory particle alters the SAGA coactivator to enhance its interactions with transcriptional activators.
    Lee D; Ezhkova E; Li B; Pattenden SG; Tansey WP; Workman JL
    Cell; 2005 Nov; 123(3):423-36. PubMed ID: 16269334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.